

US007445775B2

(12) United States Patent

Collen et al.

(54) YEAST EXPRESSION VECTOR AND A METHOD OF MAKING A RECOMBINANT PROTEIN BY EXPRESSION IN A YEAST CELL

- (75) Inventors: Désiré José Collen, London (GB);
 Nubuo Nagai, Leuven (BE); Yves Laroche, Brussel (BE)
- (73) Assignee: Thromb-X nv, Leuven (BE)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 386 days.
- (21) Appl. No.: 10/450,976
- (22) PCT Filed: Dec. 20, 2001
- (86) PCT No.: PCT/BE01/00217
 - § 371 (c)(1), (2), (4) Date: **Dec. 8, 2003**
- (87) PCT Pub. No.: WO02/50290

PCT Pub. Date: Jun. 27, 2002

(65) **Prior Publication Data**

US 2004/0071676 A1 Apr. 15, 2004

(30) Foreign Application Priority Data

Dec. 21, 2000	(GB)	 0031196.9
Jul. 9, 2001	(GB)	 0116690.9
Jul. 9, 2001	(GB)	 0116702.2

(51) Int. Cl.

C12N 1/18	(2006.01)
C12N 15/74	(2006.01)
C07H 21/04	(2006.01)
C07K 14/00	(2006.01)

(56) **References Cited**

U.S. PATENT DOCUMENTS

4,774,087	Α	9/1988	Wu et al.
5,288,489	Α	2/1994	Reich et al.
5,407,673	Α	4/1995	Reich et al.

(10) Patent No.: US 7,445,775 B2

(45) **Date of Patent:** Nov. 4, 2008

FOREIGN PATENT DOCUMENTS

WO	WO 90/13640	11/1990
WO	WO 93/07893	4/1993
WO	WO 94/10318	5/1994
WO	WO 00/18436	4/2000

OTHER PUBLICATIONS

Song et al., Shengwu Gongcheng Xuebao (1999), 15(2) 211-214. abstract.*

Cregg et al., "Recombinant Protein Expression in *Pichia pastoris*," *Molecular Biology* 16:23-52 (2000).

Dunman et al. "O-Mannosylation of *Pichia pastoris* cellular and recombinant proteins," *Biotechnol. Appl. Biochem.* 28:39-45 (1998). Wang et al., "Structure and function of microplasminogen: I. Methionine shuffling, chemical proteolysis, and proenzyme activation," *Protein Science* 4:1758-1767 (1995).

Cregg et al., "Recombinant protein expression in *Pichia pastoris*," Molecular Biotechnology 16 (1), 23-52 (2000).

Forsgren et al., "Molecular cloning and characterization of a fulllength cDNA clone for human plasminogen," FEBS Lett. Mar. 23, 1987;213(2):254-60.

Lasters et al., "Enzymatic properties of phage-displayed fragments of human plasminogen," Eur. J. Biochem., 244, 946-952 (1997).

Thorsen et al., "Adsorption to fibrin of native fragments of known primary structure from human plasminogen," Biochimica et Biophsica Acta, 668 (1981) 377-387.

Wang et al., "Structure and function of microplasminogen: I. Methionine shuffling, chemical proteolysis, and proenzyme activation," Protein Sci. 1995 4: 1758-1767.

Shepard et al. "Large-Scale Purification of Recombinant Human Angiostatin." *Protein Expression and Purification* 20, 216-227 (2000).

European Patent Office Communication dated Jul. 19, 2006.

International Preliminary Examination Report dated Mar. 25, 2003. International Search Report dated May 31, 2002.

English translation of Office Action as issued by Japan Patent Office dated Oct. 17, 2007 in Patent Application No. 067213/2007.

* cited by examiner

Primary Examiner—Chih-Min Kam

(74) Attorney, Agent, or Firm-Clark & Elbing LLP

(57) ABSTRACT

Vectors for the expression in yeast of mammalian plasminogen derivatives such as microplasminogen and miniplasminogen are presented. Methods for expression of these proteins in a methylotrophic yeast expression system are disclosed as well as the activation and stabilisation of the recombinant proteins. The proteins of this invention are used In the treatment of focal cerebral ischemic infarction and other thrombotic diseases.

32 Claims, 5 Drawing Sheets

1 - 5 : KRINGLE DOMAINS

Figure 1

Figure 2

	bolus	infusion				Timi	flow a	at (mir	1)			
	(mg/kg)	(mg/kg)	0	15	30	45	60	75	90	105	120	135
Dose Grou	p I											
Dog 1	2	3					-			L		
Dog 2	2	-]			
Dog 3	_2]			
Dog 5	2	•]			
Dose Grou	p II											
Dog 6	1	1.5]						
Dog 7	1	1.5										
Dog 8	1	-]			
Dog 10	1	1.5					•		<u> </u>			
		Occlusion (Timi	0-1)]					

Occidatori		
Partial reca	nalisatio	n (Timi 2)
Complete r	ecanalisa	ation (Timi 3)

FIGURE 3

			10			20			30				40		
A	CCT P	TCA S	TTT F	GAT D	TGT C	GGG G	AAG K	CCT P	CAA Q	GTG V	GAG E	CCG P	AAG K	AAA K	TGT C>
50			60				70			80			90		
ССТ Р	GGA G	AGG R	GTT V	GTA V	GGG G	GGG G	TGT C	GTG V	GCC A	CAC H	CCA P	CAT H	TCC S	TGG ₩	CCC P>
1	00			110			120			1	30			140	
TGG W	CAA Q	GTC V	AGT S	CTT L	AGA R	ACA T	AGG R	TTT F	GGA G	ATG M	CAC H	TTC F	TGT C	GGA G	GGC G>
	150			1	60			170			180			1	۹n
ACC T	TTG L	ата I	тсс s	CCA P	GAG E	TGG W	GTG V	TTG L	АСТ Т	GCA A	GCC A	CAC H	тсс С	TTG L	GAG E>
		200			210			2	20			230			240
AAG K	тсс s	CCA P	AGG R	CCT P	TCA S	TCC S	TAC Y	AAG K	GTC V	ATC I	CTA L	GGT G	GCA A	CAC H	CAA Q>
		2	50			260			270			2	90		
GAA E	GTG V	AAT N	CTC L	GAA E	CCG P	CAT H	GTT V	CAG Q	GAA E	ata I	GAA E	GTG V	TCT S	AGG R	CTG L>
290			300			3.	10			320			330		
TTC F	TTG L	GAG E	CCC P	ACA T	CGA R	AAA K	GAT D	ATT I	GCC A	TTG L	CTA L	AAG K	CTA L	AGC S	AGT S>
34	40			350			360			37	0			880	
CCT P	GCC A	GTC V	ATC I	ACT T	GAC D.	AAA K	GTA V	ATC I	CCA P	GCT A	TGT C	CTG L	CCA P	TCC S	CCA P>
	390			4(00			110			420			4	30
ልልጥ	ጥለጥ	GTG	CTC	GCC	C. N. C.	000	300			mmo					CCN .
N	Ŷ	v	v	A	D	R	T	GAA E	TGT C	F	ATC I	ACT T	GGC G	TGG ₩	GGA G>
N	Ŷ	v 140	V	A	D 450	R	T	GAA E 4 f	TGT C	F	ATC I	ACT T	GGC G	TGG W	GGA G>
N GAA E	Y ACC T	V 140 CAA Q	V GGT G	A ACT T	D 450 TTT F	R GGA G	T GCT A	GAA E 46 GGC G	TGT C 50 CTT L	F CTC L	ATC I AAG K	T T GAA E	GGC G GCC A	TGG W CAG Q	G> 480 CTC L>
N GAA E	Y ACC T	V 140 CAA Q 49	GGT G	A ACT T	D 450 TTT F	GGA GGA G	T GCT A	GAA E 46 GGC G	TGT C 50 CTT L 510	F CTC L	ATC I AAG K	ACT T 170 GAA E 52	GGC G GCC A	TGG W CAG Q	GSA G> 480 CTC L>
N GAA E CCT P	ACC T GTG V	V I40 CAA Q ATT I	GGT G G GAG E	ACT T AAT N	d D 450 TTT F AAA K	GGA G G G G G G G T G V	GCT A TGC C	GAA E GGC G AAT N	TGT C 50 CTT L 510 CGC R	TTC F CTC L TAT Y	ATC I AAG K GAG E	ACT T GAA E 52 TTT F	GGC G GCC A 20 CTG L	TGG W CAG Q AAT N	GSA G> 480 CTC L> GGA G>
N GAA E CCT P 530	ACC T GTG V	V I40 CAA Q 49 ATT I	GGT GAG E 540	A ACT T AAT N	450 TTT F AAA K	GGA G G G G G T G G T G S 55	GCT A TGC C	GAA E GGC G AAT N	TGT C 50 CTT L 510 CGC R	TTC F CTC L TAT Y	ATC I AAG K GAG E	ACT T GAA E 52 TTT F	GGC G GCC A CTG L 570	TGG W CAG Q AAT N	GSA G> 480 CTC L> GGA GS
N GAA E CCT P 530 AGA R	ACC T GTG GTC V	V 140 CAA Q ATT I CAA Q	GGT GAG 540 TCC S	A ACT T AAT N ACC T	GAC D 450 TTT F AAA K GAG E	GGA G G G G G G G T G T G T G T G T C T C L	GCT A TGC C TGC C TGT C	GAA E GGC G AAT N GCT A	TGT C CTT L 510 CGC R GGG G	TTC F CTC L TAT Y 660 CAT H	ATC I AAG K GAG E TTG L	T T GAA E 52 TTT F GCC A	GGC G GCC A 20 CTG L 570 GGA G	TGG W CAG Q AAT N GGC G	GGA 480 CTC L> GGA G> ACT T>
N GAA E CCT P 530 AGA R 58	GTG V GTC V GTC	V 140 CAA Q ATT I CAA Q	GGT G GAG E 540 TCC S	A ACT T AAT N ACC T	GAC D 450 TTT F AAA K GAG E	GGA G G G G G G G G G G G G G G C T C L	GCT A TGC C TGC C TGT C 600	GAA E GGC G AAT N GCT A	TGT C CTT L S10 CGC R GGG G	TTC F CTC L TAT Y 660 CAT H	ATC I AAG K GAG E TTG L	ACT T GAA E 52 TTT F GCC A	GGC G GCC A 20 CTG L 570 GGA G	TGG W CAG Q AAT N GGC G	GGA 480 CTC L> GGA G> ACT T>
GAA E CCT P 530 AGA R GAC D	GTG GTG V GTC V GTC V AGT S	V I40 CAA Q ATT I CAA Q TGC C	GGT GAG E 540 TCC S CAG Q	ACT T AAT N ACC T GGT G	GAC D 450 TTT F AAA K GAG E GAC D	GGA G G G G G G G G G G G G G G G G G G	GCT A TGC C TGC C TGT C 600 GGA G	GAA E GGC G AAT N GCT A GGG G GGG	TGT C CTT L 510 CGC R GGG G CCT P	TTC F CTC L TAT Y 60 CAT H CTG L	ATC I AAG K GAG E TTG L O GTT V	T T GAA E TTT F GCC A TGC C	GGC G G CTG L 570 GGA G TTC F	TGG W CAG Q AAT N GGC G GAG E	GGA GS CTC L> GGA GS ACT T> AAG K>
GAA E CCT P 530 AGA R 58 GAC D	ACC T GTG V GTC V GTC V AGT S 630	V I40 CAA Q ATT I CAA Q TGC C	GGT GAG E 540 TCC S CAG Q	ACT T AAT N ACC T S90 GGT G	GAC D 450 TTT F AAA K GAG E GAC D	GGA G G G G G G G G G G G G G G G G G G	GCT A TGC C TGC C TGT C GGA GGA G	GAA E GGC G AAT N GCT A GGG G GGG G G	TGT C CTT L 510 CGC R GGG G GCT P	TTC F CTC L TAT Y CAT H CTG L	ATC I AAG K GAG E TTG L 0 GTT V 660	T T GAA E 52 TTT F GCC A TGC C	GGC G G CTG L 570 GGA G TTC F	TGG W CAG Q AAT N GGC G GAG E	GGA GS GGA GS ACT T> AAG K>
GAA E CCT P 530 AGA R GAC D GAC D	ACC T GTG V GTC V GTC V GTC V GTC V GTC V GTC V GTC V GTC V GTC V C GTC V C C C C C C C C C C C C C C C C C C	V I40 CAA Q 49 ATT I CAA Q TGC C TAC Y	GGT GGT GAG E 540 TCC S CAG Q ATT I	ACT T AAT N ACC T G GGT G GGT G GGT L	d 50 TTT F AAAA K GAG E GAG E GAC D CAA Q	GGA G GTG V 5500 S S CTC L AGT S GGA G	ACC T GCT A TGC C GCT C GCT G GCT G GCT C GCT C GCT C GCT C GCT C C GCT C C GCT C C C C	GAA E GGC G G AAT N GCT A GGG G G 50 ACT T	TGT C 50 CTT L 510 CGC R GGG G G G CCT P AGT S	TTAT F CTC L TAT Y S60 CAT H 61 CTG L TGG W	ATC I AAG GAG E TTG L GTT V 6600 GGT G	ACT T T GAA E 52 TTT F GCC A TGC C C TT L	GGC G GCC A 20 CTG GCTG GGA G F F GGC G GGC G	TGG W CAG Q AAT N GGC GAG E 20 GAG E 67 TGT C	GGA GS GGA GS ACT TS AAG KS O GCA AS
GAA E CCT P 530 AGA R 58 GAC D GAC D	ACC T GTG V GTC V GTC V GTC V GTC V GTC V GTC V GTC V GTC V GTC V GTC V GTC V GTC GTC GTC V GTC GTC GTC GTC GTC GTC GTC GTC GTC GTC	V 140 CAA Q 45 ATT I CAA Q TGC C TAC Y 680	GGT GAG E 540 TCC S CAG Q ATT I	ACT T AAT N ACC T GGGT G GGT C G GGT L	450 TTT F AAAA K GAG E GAC D CAAA Q 690	GGA G GTG V 5500 CTC L AGT S GGA G	GCT A TGC C TGT C GGA G GTC V	GAA E GGC G G AAT N GCT A GCG G G S 0 ACT T 70	TGT C 50 CTT L 5110 CGC R GGG G G G G CCT P AGT S 0	F F CTC L TAT Y S60 CAT H 61 CTG L TGG W	ATC I AAG K GAG E TTG L 0 GTT V 6600 GGT G G 7	ACT T T GAA E 52 TTT F GCC A TGC C C TTT L	GGC G GCC A 20 CTG L 570 GGA G F F GGC G G G G G G G G G C CTG L	TGG W CAG Q AAT N GGC G G G G G G G G G G G G G G G G G	GGA G> GGA GS ACT T> AAG K> 0 GCA A> 720
GAA E CCT P 530 AGA R 58 GAC D GAC D CGC R	ACC T GTG V GTC V GTC V GTC V GTC V SO AAGT S 630 AAAA K C CCC P	V 440 CAA Q 45 ATT I CAA Q TGC C TGC C TAC Y 880 AAT N	GGT GGT GAG E 540 TCC S CAG Q ATT I AAG K	ACT T AAT N ACC T GGT GG GG GG GG CCT P	GAC D 4500 TTT F GAA E GAA E GAA E GAA C D O CAA Q GGT G	GGA G GGA G GTG V S S CTC L AGT S GGA G C V	ACC T GCT A TGC C GCT C GCT C GCT G GCT C GCT C GCT C TGT C GCT T T T	GAA E GGC G G AAT N GCT A GGG G G 50 ACT T 70 GTT V	TGT C 50 CTT L 510 CGC R GGG G G G CCT P AGT S 0 CGT R	F CTC L TAT Y 660 CAT H GIC CTG L TGG W GTC V	ATC I AAG K GAG E TTG L 0 GTT V 6600 GGT G G T CC S	ACT T T T T T T T T T T T T T T C C T T T C C T	GGC G G CTG CTG GGA G GGA G G GGC G TTT F	TGG W CAG Q AAT N GGC G GAG E C GTT V	GGA G> 480 CTC L> GGA G> ACT T> AAG K> 0 GCA A> 720 ACT T>
GAA E CCT P 530 AGA R 58 GAC D GAC D CGC R	ACC T GTG V GTC V GTC V GTC V GTC V GTC V GTC V GTC V GTC V GTC V GTC V GTC C V GTC C V	V 440 CAA Q 45 ATT I CAA Q TGC C TAC Y 80 AAT N 73	GGT GGT GAG E 540 TCC S CAG Q ATT I AAG K 0	ACT T AAT N ACC T S90 GGT G G G G G G C CT P	GAC D 4500 TTT F GAG E GAG E GAG CAA Q 6900 GGT G 7	GGA G GTG V 55 CTC L AGT S GGA G GTC V 40	ACC T GCT A TGC C GCT C GCT C GCT C GCT C GCT C GCT C TGT C GCT T TGT C GCT T T T	GAA E GGC G G G G G G G G G G G G T T 70 GTT V	TGT C 50 CTT L 510 CGC R 510 CGC R S GGG G CCT P AGT S 0 CGT R 750	F F CTC L TAT Y 660 CAT H 61 CTG L TGG W GTC V	ATC I AAG K GAG E TTG L O GTT V 660 GGT G C TCC S	ACT T T GGAA E 52 TTT F GCCC A TGCC C TTC L 10 AGG R	GGC G G CTG L S70 GGA G G G G G G G G CTG F F G G C TTC F G G C TTT F	TGG W CAG Q AAT N GGC G GAG E 67 TGT C GTT V	GGA G> 480 CTC L> GGA G> ACT T> AAG K> 0 GCA A> 720 ACT T>

GCA A	CCT P	CCG P	LO CCT P	GTT V	GTC V	20 CTG L	CTT L	CCA P	30 GAT D	GTA V	GAG E	ACT T	0 CCT P	TCC S	GAA E	50 GAA E	GAC D	TGT C	60 ATG M
TTT F	GGG G	AAT N	70 GGG G	AAA K	GGA G	80 TAC Y	CGA R	GGC G	90 AAG K	AGG R	GCG A	10 ACC T)0 ACT T	GTT V	ACT T	110 GGG G	ACG T	CCA P	120 TGC C
CAG Q	GAC D	13 TGG A	30 GCT W	GCC A	CAG Q	140 GAG E	CCC P	CAT H	150 AGA R	CAC H	AGC S	16 ATT I	50 TTC F	ACT T	CCA P	170 GAG E	ACA T	AAT N	180 CCA P
CGG R	GCG A	19 GGT G	90 CTG L	GAA E	AAA K	200 AAT N	TAC Y	TGC C	210 CGT R	AAC N	CCT P	22 GAT D	20 GGT G	GAT D	GTA V	230 GGT G	GGT G	CCC P	240 TGG W
TGC C	TAC Y	2! ACG T	50 ACA T	AAT N	CCA P	260 AGA R	AAA K	CTT L	270 TAC Y	GAC D	TAC Y	28 TGT C	30 GAT D	GTC V	CCT P	290 CAG Q	TGT C	GCG A	300 GCC A
CCT P	TCA S	3: TTT F	LO GAT D	TGT C	GGG G	320 AAG K	CCT P	CAA Q	330 GTG V	GAG E	CCG P	34 AAG K	io AAA K	TGT C	CCT P	350 GGA G	AGG R	GTT V	360 GTA V
GGG G	GGG G	3' TGT C	70 GTG V	GCC A	CAC H	380 CCA P	CAT H	TCC S	390 TGG W	CCC P	TGG W	4(CAA Q)0 GTC V	AGT S	CTT L	410 AGA R	ACA T	AGG R	420 TTT F
GGA G	ATG M	4: CAC H	30 TTC F	TGT C	GGA G	440 GGC G	ACC T	TTG L	450 ATA I	TCC S	CCA P	4 (GAG E	50 TGG W	GTG V	TTG L	470 ACT T	GCA A	GCC A	480 CAC H
TGC C	TTG L	4 GAG E	90 AAG K	TCC S	CCA P	500 AGG R	CCT P	TCA S	510 TCC S	TAC Y	AAG K	52 GTC V	20 ATC I	CTA L	GGT G	530 GCA A	CAC H	CAA Q	540 GAA E
GTG V	AAT N	5 CTC L	50 GAA E	CCG P	CAT H	560 GTT V	CAG Q	GAA E	570 ATA I	GAA E	GTG V	58 TCT S	30 AGG R	CTG L	TTC F	590 TTG L	GAG E	CCC P	600 ACA T
CGA R	AAA K	6 GAT D	10 ATT I	GCC A	TTG L	620 CTA L	AAG K	CTA L	630 AGC S	AGT S	CCT P	64 GCC A	10 GTC V	ATC I	ACT T	650 GAC D	AAA K	GTA V	660 ATC I
								F	igu	re 4	4A								

		67	0		e	80			690			70	0		7	10			720
CCA	GCT	TGT	CTG	CCA	TCC	CCA	AAT	TAT	GTG	GTC	GCC	GAC	CGG	ACC	GAA	TGT	TTC	ATC	ACT
P	А	C	L	P	S	P	N	Y	v	v	А	D	R	т	Е	C	F	I	т
		73	30		7	40			750			70	50			770			780
GGC	TGG	GGA	GAA	ACC	CAA	GGT	ACT	TTT	GGA	GCT	GGC	CTT	CTC	AAG	GAA	GCC	CAG	CTC	CCT
G	W	G	Е	т	Q	G	т	F	G	A	G	L	L	ĸ	E	A	Q	L	P
									010							220			010
-		73	, 10 22 10	***		300 maa	3 3 00	a aa	0T0	a 2 a	mmm	0.000	40 77m	003	202	000	0 22	maa	2040
GTG	ATT	GAG	AAT	AAA	GIG	TGC	AAT	CGC	TAT	GAG	111	CIG T	MMI	GGA	MGA D	GIC	CAA	100	MUU
v	Т	Б	N.	ĸ	v	C	11	R	T	Б	r	ц	14	G	ĸ	v	Ŷ	5	1
		8	50		1	360			870			8	30		1	390			900
GAG	CTC	TGT	GCT	GGG	CAT	TTG	GCC	GGA	GGC	ACT	GAC	AGT	TGC	CAG	GGT	GAC	AGT	GGA	GGG
E	L	C	A	G	н	L	A	G	G	т	D	S	C	Q	G	D	S	G	G
														~					
		9:	LO		9	920			930			94	1 0		:	950			960
CCT	CTG	\mathbf{GTT}	TGC	TTC	GAG	AAG	GAC	AAA	TAC	ATT	TTA	CAA	GGA	GTC	ACT	AGT	TGG	\mathbf{GGT}	\mathbf{CTT}
P	L	v	C	F	E	ĸ	D	ĸ	Y	I	L	Q	G	v	т	S	W	G	\mathbf{L}
									000			1.0	00		10	010			1020
		9'	70			980		_	550										
GGC	TGT	9' GCA	70 CGC	ccc	AAT	AAG	CCT	GGT	GTC	TAT	GTT	CGT	GTC	TCC	AGG	TTT	GTT	ACT	TGG
GGC G	TGT C	9' GCA A	70 CGC R	CCC P	AAT N	980 AAG K	CCT P	GGT G	GTC V	TAT Y	GTT V	CGT R	GTC V	TCC S	AGG R	TTT F	GTT V	ACT T	TGG W

1040 1030 ATT GAG GGA GTG ATG AGA AAT AAT TAA I E G V M R N N >

Figure 4B

25

35

YEAST EXPRESSION VECTOR AND A METHOD OF MAKING A RECOMBINANT PROTEIN BY EXPRESSION IN A YEAST CELL

CROSS REFERENCE TO RELATED APPLICATIONS

This application is the U.S. National Stage of International Application No. PCT/BE01/00217, filed Dec. 20, 2001, 10 which was published in English under PCT Article 21(2), and which claims the benefit of British Patent Application Nos. 0031196, 0116690, 0116702, filed Dec. 21, 2000, Jul. 9, 2001, and Jul. 9, 2001, respectively.

This invention relates to the treatment and prevention of 15 thrombotic disorders. More specifically, the present invention relates to the high yield production, via recombinant DNA technology, of derivatives of mammalian plasminogen, their purification and stabilization, and to the use of the corresponding activated and stabilized plasmin derivatives for the treatment of focal cerebral ischemic infarction (ischemic 20 stroke) or arterial thrombotic diseases such as peripheral arterial occlusive disease or acute myocardial infarction.

BACKGROUND OF THE INVENTION

Mammalian blood contains an enzymatic system, called the fibrinolytic or plasminogen system, which plays a role in various biological phenomena such as reproduction, embryogenesis, cell invasion, angiogenesis and brain function. In addition, this system participates in thrombosis, atheroscle- $_{30}$ rosis, neoplasia, metastasis and chronic inflammatory disorders. The fibrinolytic system contains plasminogen, which by the action of plasminogen activators is converted to the active enzyme plasmin, which in turn digests fibrin to soluble degradation products. Two physiological plasminogen activators, respectively called tissue-type (t-PA) and urokinasetype (u-PA), have been identified. Inhibition of the fibrinolytic system may occur either at the level of plasminogen activators, by means of specific plasminogen activator inhibitors (PAI), or at the level of plasmin, mainly by means of α_2 -antiplasmin.

A number of substances are involved in clot formation and lysis. Plasminogen and plasmin are two of the primary substances involved in lysis. Plasminogen, a protein composed of 791 amino-acids that circulates in plasma at a concentration of about 200 µg/ml, is the zymogen form of a fibrinolytic 45 enzyme, plasmin, which has broad substrate specificity and is ultimately responsible for degrading blood clots. For the most part, fibrin proteolysis is mediated by the generation of plasmin within a fibrin clot from the plasminogen trapped within the clot. Plasminogen-plasmin conversion, both within a clot 50 and at its surface, is facilitated by the affinity of t-PA for fibrin, which results in a fibrin-dependent t-PA-induced plasminogen activation.

Plasminogen is a single-chain glycoprotein with a molecular weight of 92,000 which is synthesized by the liver and cleared from the circulation (via the liver) with a half-life of about 2.2 days. Human plasminogen comprises (i) a preactivation peptide of about 67 to 76 amino-acids, (ii) five triple-loop disulfide bonded structures (named "kringles") of about 80 amino-acids, (iii) a catalytic serine proteinase unit of 60 about 230 amino-acids, and (iv) some inter-domain connecting sequences. Native plasminogen with NH2-terminal glutamic acid (commonly named "Glu-plasminogen") is easily converted by limited digestion by plasmin of the Arg⁶⁸-Met⁶⁹, Lys⁷⁷-Lys⁷⁸, or Lys⁷⁸-Val⁷⁹ peptide bonds to modified forms commonly designated "Lys-plasminogen". Plasmino-65 gen is converted to plasmin by cleavage of the Arg⁵⁶¹-Val⁵⁶² peptide bond. The plasmin molecule is a two-chain trypsin-

like serine proteinase with an active site composed of His⁶⁰³, Asp⁶⁴⁶, and Ser⁷⁴¹. The kringles of plasminogen contain lysine binding sites that interact specifically with amino-acids such as lysine, 6-aminohexanoic acid and tranexamic acid. The lysine binding sites located in the kringle 1-3 region mediate the specific binding of plasminogen to fibrin and the kinetics of the interaction of plasmin with α_2 -antiplasmin, and therefore play a crucial role in the regulation of physiological fibrinolysis.

Miniplasminogen is a derivative of plasminogen lacking the first four kringles which may be prepared by digestion of plasminogen with elastase and which is fully activatable to plasmin. It has a molecular weight of 38,000 and contains over 100 amino-acids of the A chain including the fifth kringle structure.

Elevated pH conditions result in cleaving the Arg⁵³⁰-Lys⁵³¹ or Lys⁵³¹-Leu⁵³² bond of plasminogen and promoting disulfide bond rearrangement, thus producing microplasminogen, a derivative consisting of a 30 or 31 residue COOHterminal peptide derived from the A chain bound through new disulfide bonds to the intact B-chain of plasmin, as disclosed in U.S.Pat. No. 4,774,087.

 α_2 -antiplasmin is the main physiological plasmin inhibitor in human plasma which very rapidly inhibits plasmin, whereas plasmin formed in excess of α_2 -antiplasmin may be neutralized more slowly by macroglobulin and other serine proteinase inhibitors. α_2 -antiplasmin is a single-chain glycoprotein containing 464 amino acids which is present in plasma at a concentration of about 70 mg/l. During purification it is usually converted into a 452 amino-acid derivative by removal of 12 amino terminal amino-acids. α_2 -antiplasmin is synthesized by the liver and cleared from the circulation (via the liver) with a half-life of 2.6 days. Its reactive site is the Arg^{376} -Met³⁷⁷ peptide bond. α_2 -antiplasmin is unique among serine proteinase inhibitors by having a COOH-terminal extension of 51 amino-acid residues which contains a secondary binding site that reacts with the lysine binding sites of plasminogen and plasmin. The native plasminogen-binding form of α_2 -antiplasmin becomes partly converted in the circulating blood to a non-plasminogen-binding, less reactive form, which lacks the 26 COOH-terminal residues. The Gln^{14} -residue of α_2 -antiplasmin can crosslink to α -chains of fibrin by a process which requires Ca²⁺ and is catalyzed by activated coagulation factor XII. α_2 -antiplasmin forms an inactive 1:1 stoichiometric complex with plasmin.

Plasmin or derivatives thereof (including mini- and microplasminogen), when infused in the vicinity of a clot in a dose sufficiently high to deplete α_2 -antiplasmin locally in an occluded blood vessel with stagnant flow, may have a sufficiently long half-life to be able to exert a local therapeutic effect. The administration of large amounts of plasmin is well tolerated, unlike the use of certain other proteolytic enzymes.

Thromboembolic disease, i.e. blockage of a blood vessel by a blood clot, affects many adults and can be a cause of death. Most spontaneously developing vascular obstructions are due to the formation of intravascular blood clots, known as thrombi. Small fragments of a clot (emboli) may detach from the body of the clot and travel through the circulatory system to lodge in distant organs and initiate further clot formation. Heart attack, stroke, renal and pulmonary infarcts are well known consequences of thromboembolic phenomena. A blood clot is a gelled network of protein molecules within which are trapped circulating blood cells, platelets and plasma proteins. Fibrin is a major protein component of a clot which forms a relatively Insoluble network. Proteolytic, particularly fibrinolytic enzymes, have been used to dissolve vascular obstructions, since disruption of the fibrin matrix results in dissolution of the clot. Clots are formed when soluble fibrinogen, which is present in high concentrations in blood, is converted to insoluble fibrin by the action of throm-

bin. The probability of clot formation can be reduced by lowering the concentration of circulating fibrinogen, using fibrinogenolytic enzymes. Thromboembolytic therapies have involved the administration of a plasminogen activator, e.g. either by direct intravenous injection, or by reinjection of a 5 patient's plasma to which a plasminogen activator has been added ex vivo, or injection of plasma protein fractions previously mixed with streptokinase, or injection of porcine plasmin stabilized with added lysine in conjunction with streptokinase 10

Stroke is defined as a rapidly developing clinical sign of focal or global disturbance of cerebral function with symptoms lasting at least 24 hours. Stroke is typically caused by blockage or occlusion of blood vessels to the brain or within the brain. With complete occlusion, arrest of cerebral circulation causes cessation of neuronal electrical activity within seconds. Within a few minutes after deterioration, depletion of high energy phosphates, membrane ion pump failure, efflux of cellular potassium, influx of sodium chloride and water, and membrane depolarization occur. If the occlusion 20 persists for more than five to ten minutes, irreversible damage results. With incomplete ischemia, however, the outcome is difficult to evaluate and depends largely on residual perfusion and the availability of oxygen. After a thrombotic occlusion of a cerebral vessel, ischemia is rarely total. Some residual perfusion usually persists in the ischemic area, depending on collateral blood flow and local perfusion pressure.

Cerebral blood flow can compensate for drops in mean arterial blood pressure from 90 to 60 mm Hg by auto-regulation. This phenomenon involves dilatation of downstream 30 resistant vessels. Below 60 mm Hg, vasodilatation is inadequate and the cerebral blood flow falls. The brain however has perfusion reserves that can compensate for the fall in cerebral blood fall. When distal blood pressure falls below about 30 mm Hg, both compensatory mechanisms (auto-35 regulation and perfusion reserve) are inadequate to prevent failure of oxygen delivery. As flow drops below the ischemic threshold, symptoms of tissue hypoxia develop. Severe ischemia may be lethal. Moderate ischemia results in a tissue area that can be saved called penumbra. In the neurological context, penumbra refers to a zone of brain tissue with mod- 40 erate ischemia and paralyzed neuronal function, which is reversible with restoration of adequate perfusion. The penumbra forms a zone of collaterally perfused tissue surrounding a core of severe ischemia in which an infarct has developed. When a clot is degraded and the blood flow to the 45 penumbra is restored, the phenomenon of reperfusion injury can occur.

Although an ischemic event can occur anywhere in the vascular system, the carotid artery bifurcation and the origin of the internal carotid artery are the most frequent sites for 50 thrombotic occlusions of cerebral blood vessels, which result in cerebral ischemia. The symptoms of reduced blood flow due to stenosis or thrombosis are similar to those caused by middle cerebral artery disease. Flow through the ophthalmic artery is often affected sufficiently to produce transient 55 monocular blindness. Severe bilateral internal carotid artery stenosis may result in cerebral hemispheric hypoperfusion. This manifests with acute headache ipsilateral to the acutely ischemic hemisphere. Occlusions or decrease of the blood flow with resulting ischemia of one anterior cerebral artery distal to the anterior communicating artery produces motor 60 and cortical sensory symptoms in the contralateral leg and, less often, proximal arm. Other manifestations of occlusions or underperfusion of the anterior cerebral artery include urinary incontinence due to damage to the parasagittal frontal lobe. Language disturbances manifested by decreased spon- 65 taneous speech may accompany generalized depression of psychomotor activity.

Most ischemic strokes involve portions or all of the territory of the middle cerebral artery, with emboli from the heart or extracranial carotid arteries accounting for most cases. Emboli may occlude the main stem of the middle cerebral artery, but more frequently produce distal occlusion of either the superior or the inferior branch. Occlusions of the superior branch cause weakness and sensory loss that are greatest in the face and arm. Occlusions of the posterior cerebral artery distal to its penetrating branches cause complete contra-lateral loss of vision. Difficulty in reading (dyslexia) and performing calculations (dyscalculia) may follow ischemia of the dominant posterior cerebral artery. Proximal occlusion of the posterior cerebral artery causes ischemia of the branches penetrating to calamic and limbic structures, resulting in disturbances that may chronically change to intractable pain of the defective site (thalamic pain).

A significant event in cerebral ischemia is known as the transient ischemic attack ("TIA"), defined as a neurologic deficit with a duration of less than 24 hours. TIA is an important sign of an ischemic development that may lead to cerebral infarction. Its etiology involves hemodynamic events and thromboembolic mechanisms. Because TIA often resolves within one hour, a longer deficit is often classified as presumptive stroke and is, accordingly, associated with permanent brain injury. Therefore, computed tomographic brain scans are used to search for cerebral infarction in areas affected by TIA lasting longer than two hours. Thus, the relevant clinical distinction between TIA and stroke is whether ischemia has caused brain damage, which is typically classified as infarction or ischemic necrosis. Subjects with deteriorating clinical signs might have stroke in evolution (progressive stroke).

Many other diseases are caused by or associated with ischemia. For instance, vertebrobasilar ischemia results from occlusion of the vertebral artery which causes lateral medullary syndrome with symptoms including vertigo, nausea, ipsilateral ataxia and Herner's syndrome. Vertebrobasilar ischemia often produces multifocal lesions scattered on both sides of the brain stem along a considerable length. A basilar artery occlusion produces massive deficits, including paralysis of the limbs and of most bulbar muscles, leaving the subject only able to communicate by moving the eyes or eyelids and producing an initial reduction in arousal followed by blindness and amnesia.

Venous occlusion can cause massive damage and death. The primary mechanism of brain damage is then a reduction in capillary blood flow because of increased outflow resistance from the blocked veins. Back transmission of high pressure into the capillary bed usually results in early brain swelling from oedema and hemorrhagic infarction in subcortical white matter. The most dangerous form of venous disease arises when the superior sagittal sinus is occluded. Venous occlusion occurs in association with coagulation disorders, often in the purpural period or in subjects with disseminated cancers.

Brief diffuse cerebral ischemia can cause syncope without any permanent sequel. Prolonged diffuse ischemia in other organs has devastating consequences. Common causes are cardiopulmonary failure, including infarction, aortic dissection and global hypoxia or carbon monoxide poisoning. Clinically, a diffuse hypoxia/ischemia results in unconsciousness and coma, often followed by a chronic vegetative state. If the subject does not regain consciousness within a few days, chances for the return of independent brain functions becomes very poor.

Hyperviscosity syndrome is another disease related to blood flow and ischemia. Subjects with hyperviscosity syndrome can present either with focal neurologic dysfunction or with diffuse or multifocus signs or symptoms including headache, visual disturbances, cognitive impairments or seizures.

Ischemic stroke due to thrombotic closure of a cerebral artery is amenable to therapy with antithrombotic and thrombolytic agents. The use of t-PA within three hours of symptom onset is associated with a better neurologic outcome, but a significant percentage of treated patients experience acute hemorrhage in the brain. Thus, the development of safer and more effective treatments is needed.

U.S. Pat. No. 5,288,489 discloses a method of dissolving an intravascular thrombus in a human patient, or reducing the risk of thrombus formation in a patient (such as diabetics and pregnant women), comprising administering parenterally to the patient a therapeutically effective amount of human or mammalian plasmin or mini-plasmin or micro-plasmin in a fibrinolytic or fibrinogenolytic active form, the said active form being obtained either by exposure to an insolubilized, entrapped, encapsulated or immobilized plasminogen activator or by inhibiting the autolytic activity by means of certain hydrophobic ions. This method is disclosed in the context of heart attack, stroke, renal and pulmonary infarctions, thrombophlebitis, and so on. EP-A-631,786 discloses administration to a subject of a protein having the effect of lys-plasmi- 20 nogen for the treatment of ischemia, infarction, brain edema and reperfusion injury that follows ischemic events. WO 00/18436 discloses the use of plasmin, mini-plasmin or micro-plasmin in a therapeutic composition for the treatment of focal cerebral ischemic infarction (ischemic stroke).

In the population over 60 years of age, the prevalence of intermittent claudication or chronic peripheral arterial occlusive disease (PAOD) being the result of atherosclerotic and thrombotic processes, is between 1 and 8%. Over the course of their disease, about 20% of the patients with intermittent claudication will progress to critical leg ischemia (acute PAOD) endangering the viability of the lower extremity, 10% will undergo invasive/surgical procedures for progressive symptoms, and 5% require amputation of the limb. Blood flow can be restored through operative bypass surgery, vascular repair surgery or pharmacological dissolution of the blood clot. Intra-arterial thrombolysis is expected to provide a significant reduction in surgical procedures, without increased risk of amputation or death. Urokinase is currently the most widely used agent for intra-arterial thrombolysis.)

Plasminogen can be obtained from human plasma fractions 40 by affinity chromatography on lysine-Sepharose, however with yields of no more than 0.25 g/l. With the general reluctance to use plasma fractionation derivatives, alternative approaches such as production via recombinant DNA technology are preferred. For the production of a large and com- 45 the five kringle domains. plex molecule such as plasminogen or plasmin, however, an effective expression system is required. Indeed recombinant Intact plasminogen cannot readily be expressed in activatable form in common eukaryotic expression systems, due to the nearly ubiquitous presence of intracellular plasminogen activators within such cell types, resulting in degradation of human plasminogen in the conditioned cell culture media. According to J. Wang et al. in Protein Science (1995) 4:1758-1767, a baculovirus/insect cell expression system has enabled expression of microplasminogen at low levels of 3 to 12 mg/l. Such a yield is obviously too low for the production of large 55 quantities of the purified active substance. We are not aware of any data relating to the expression of miniplasminogen. Therefore, there is a need in the art for an expression system making it possible to produce large amounts of plasminogen and derivatives thereof, including mini- and microplasmino- 60 gen, which will be useful in the treatment of ischemic and thrombotic disorders and associated diseases such as listed hereinabove.

SUMMARY OF THE INVENTION

The present invention relates to the use of certain yeast, e.g. Pichia pastoris, for the high yield production of recombinant mammalian plasminogen and derivatives thereof (including, but not limited to, miniplasminogen and to microplasminogen) and to the production of recombinant mammalian plasmin and derivatives thereof in sufficient amounts, purity and stability to be clinically applicable for the treatment of mammal, specifically humans and horses. The therapeutic efficacy of the recombinant human microplasmin obtained according to this production method was illustrated in animal models of ischemic stroke, acute myocardial infarction and extracorporeal arteriovenous circulation thrombosis models.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic representation of the amino-acid structure of plasminogen, wherein black bars indicate disulphide bonds; Pli is a plasmic cleavage site for conversion of Glu-plasminogen to Lys-plasminogen; UK is the cleavage site for plasminogen activators, yielding plasmin; µPIg and mPIg respectively indicate the origin of microplasminogen and miniplasminogen used in this invention.

FIG. 2 shows individual data of angiographic examinations in dogs with a copper coil induced thrombosis after treatment with the recombinant microplasminogen of this invention.

FIG. 3 shows the nucleotide sequence (SEQ. ID. No. 3) and amino-acid sequence (SEQ. ID. No. 4) of human microplas-25 minogen.

FIG. 4 shows the nucleotide sequence (SEQ. ID. No. 5) and amino-acid sequence (SEQ. ID. No. 6) of human miniplasminogen.

Definitions

50

65

The term "catalytic domain of plasminogen", as used herein, refers to a serine protease unit of about 230 aminoacids that, after activation by a plasminogen activator, digest fibrin to soluble degradation products.

The term "mutants", as used herein, refers to a catalytically active protein sequence in which one or more amino-acids are substituted, deleted or mutated, and wherein the level of similarity with the wild-type protein is at least 80%, preferably at least 85% and more preferably at least 90%.

The term "hybrids", as used herein, refers to the protein of a mammal wherein at least one sequence of one or more amino-acids is replaced by a sequence, preferably the corresponding sequence, from the corresponding protein of another mammal. With respect to plasminogen, the sequence replacement may be either in the catalytic domain or in any of

DETAILED DESCRIPTION OF THE INVENTION

A first object of the invention is a yeast expression vector comprising a mammalian nucleotide sequence operably linked to a promoter, wherein the said mammalian nucleotide sequence codes for the catalytic domain of plasminogen and further optionally codes for one of more kringle domains of plasminogen, or mutants or hybrids thereof. In preferred embodiments of the said yeast expression vector, the mammalian nucleotide sequence codes for plasminogen, microplasminogen and miniplasminogen respectively. In a more specific embodiment, the nucleotide sequence, such as SEQ ID No. 1 (plasminogen), SEQ ID No. 3 (microplasminogen) or SEQ ID No. 5 (miniplasminogen). In a preferred embodiment, the promoter is an inducible promoter. In another preferred embodiment, the yeast expression vector is able to stable integrate in the yeast genome, e.g. by homologous recombination. In preferred embodiments, the nucleotide sequence is fused to a secretion signal, i.e. a peptide that targets protein to the cell membrane where the signal peptide is cleaved and the protein released in the medium, for example α -factor, PHO or AGA-2.

Insert the enclosed sequence listing at the end of the specification.

Preferably, the yeast expression vector of the invention is for expression in a yeast selected from the group consisting of methylotrophic yeasts represented by the genera *Hansenula*, 5 *Pichia*, *Candida* and *Torulopsis*.

A second object of the invention is a yeast cell comprising a mammalian nucleotide sequence coding for the catalytic domain of plasminogen and further optionally coding for one or more kringle domains of plasminogen, or mutants or hybrids thereof. In preferred embodiments of the said yeast cell, the mammalian nucleotide sequence codes for plasminogen, microplasminogen and miniplasminogen respectively, i.e. the yeast cell comprises the nucleotide sequence SEQ.ID.No. 1 or the nucleotide sequence SEQ.ID.No. 3 or the nucleotide sequence SEQ.ID.No. 5.

The invention also relates to a yeast cell transfected with a vector such as disclosed hereinabove. Preferably, the said vector is integrated in th genome.

The yeast cell of the invention preferably belongs to the group of methylotrophic yeasts. More particularly, the said ²⁰ yeast may be selected from the genera consisting of, *Pichia, Hansenula, Candida,* and *Torulopsis.* In another embodiment, the yeast cell of the invention belongs to the *Pichia pastoris* species.

An exemplary yeast cell belongs to *Pichia Pastoris* the cell ²⁵ line X33(pPicZalpha-MPG1)#5 deposited on Dec. 5, 2001 with the Belgian Coordinated Collections of Micro-organisms [BCCM-MUCL, Place Croix du Sud 3, B-1348, Louvain La Neuve, Belgium] under accession number MUCL43676. A most significant advantage of the yeast cells 30 of the invention is their ability to express human microplasminogen at a level of at least about 100 mg/litre, i.e. at a much higher level than was known in the art. Another advantage is their ability to express human miniplasminogen at a level of at least about 3 mg/litre. 35

Another object of the invention is a method of expressing a mammalian protein comprising the catalytic domain of plasminogen and further optionally comprising one or more kringle domains of plasminogen, or mutants or hybrids thereof, in a yeast cell such as defined hereinabove, using recombinant technology procedures well known in the art which are detailed in the appended examples. Specific embodiments of the said method relate to mammalian proteins having respectively the amino-acid sequence SEQ.ID. No. 2 (human plasminogen), the amino-acid sequence SEQ.ID. No. 4 (human micro-plasminogen) or the amino-acid sequence SEQ.ID. 45 No. 6 (human mini-plasminogen). In a preferred embodiment, the method further comprises the step of activating the expressed mammalian protein by means of a plasminogen activator which may be staphylokinase or a variant thereof. In another preferred embodiment, the method further comprises 50 the step of stabilizing the expressed and activated mammalian protein by means of a stabilizing agent. The said stabilizing agent may comprise either an amino-acid selected from the group consisting of lysine, 6-amino hexanoic acid and tranexamic acid or a stabilizing medium. The latter may suitably be an acid solution or an acid buffer such as a citrate buffer with a pH of about 3.1. Still preferred is a m thod further comprising the step of drying the expressed, activated and stabilized mammalian protein, e.g. by means of lyophilization

The present invention also relates to a recombinant mammalian protein obtained by a method such as described hereinabove or expressed in a yeast cell such as defined hereinabove. This protein is obtainable in large amounts and in a high purity level, thus meeting the necessary requirements for being used as an active ingredient in pharmaceutical compo-55 sitions for the treatment of the various ischemic diseases listed in the above section "background of the invention".

The present invention will be demonstrated in more detail in the following examples, which are however not intended to be limiting the scope of the invention, the latter being only defined by the appended claims.

EXAMPLE 1

Vector Construction for Expression of Human Microplasminogen and Human Miniplasminogen in *Pichia pastoris*

The pPICZαA secretion vector purchased from Invitrogen Corporation (Carlsbad, Calif.) was used to direct expression and secretion of recombinant human microplasminogen in *Pichia pastoris*. Relevant features of this vector are:

- a 942 bp fragment containing the alcohol oxidase 1 (AOX1) promoter that allows methanol-inducible, high level expression in Pichia and targeted plasmid integration to the AOX1 chromosomal locus,
- the native transcription termination and polyadenylation signal from the AOX1 gene;
- an expression cassette conferring zeocin resistance to *Escherichia coli* and *Pichia pastoris;*
- a ColE1 origin of replication for propagation and maintenance of the plasmid in *E. coli*, and
- unique restriction sites (Sacl, Pmel, BstXI) that permit linearization of the vector at the AOX1 locus for efficient integration into the *Pichia* genome.

In addition to the above features, this vector contains the secretion signal of the *Saccharomyces cerevisiae* α -factor prepropeptide, allowing expression of heterologous proteins as secreted proteins in the medium. The processing of the α factor mating signal sequence in pPICZ α occurs in two steps:

- the preliminary cleavage of the signal sequence by the KEX2 gene product, with the Kex2 cleavage occuring between arginine and glutamine in the sequence Glu-Lys-Arg * Glu-Ala-Glu-Ala [SEQ ID. NO: 11] wherein * is the site of cleavage.
- 2. the Glu-Ala repeats are further cleaved by the STE13 gene product.

However, the Glu-Ala repeats are not always necessary for cleavage by Kex2, depending on the amino acid following the Glu-Lys-Arg sequence. In some cases where Ste13 cleavage is not efficient, the Glu-Ala repeats are left on the NH_2 -terminus of the expressed protein of interest.

A Xhol recognition sequence is present at the COOHterminus of the α factor secretion signal, immediately upstream of the Lys-Arg Kex2 cleavage site. This Xhol restriction site may be used to clone the gene of interest flush with the Kex2 cleavage site by using a PCR cloning approach and an appropriate forward primer to rebuild the sequence from the Xhol site to the arginine codon. The recombinant protein of interest will then be expressed with a native NH₂terminus. Engineered immediately downstream of the α factor signal sequence in the pPICZ α A vector is a multi-cloning site with recognition sequences for the enzymes EcoRI, SfI, KpnI, XhoI, SacII and XbaI to facilitate the cloning of foreign genes.

Expression Vector Construction for Microplasminogen

The vector Fmyc-µPli disclosed by Lasters et al. in *Eur. J. Biochem.* (1997) 244:946 was used to isolate, by amplification ("PCR-rescue") with the Advantage cDNA polymerase mix available from Clontech (Palo Alto, Calif.), the region encoding the human microplasminogen protein. After a DNA template denaturation step of 3 minutes at 94° C., 30 temperature cycles were performed (30 seconds at 94° C., 30 seconds at 50° C., 30 seconds at 72° C.), followed by a 2 minutes final elongation step at 72° C. The following oligonucleotide primers LY-MPG1 (sense) and LY-MPG2 (antissense) were used in this reaction:

LY-MPLG1: 5' GGGGTATCT CTC GAG AAA AGA GCC CCT TCA TTT GAT TG (SEO.ID. No.7) LY-MPLG2: 5' GTTTTTGT $\underline{\text{TCT}}$ AGA TTA ATT ATT TCT CAT CAC TCC CTC (SEO.ID. No.8)

The LY-MPLG1 primer had an annealing region corresponding to residues 543-548 of plasminogen (Ala-Pro-Ser-Phe-Asp-Cys) [SEQ ID. NO: 12] preceded by a non-annealing extension which included the last four residues of the α_{-10} factor mating signal (Leu-Glu-Lys Arg) [SEQ ID. NO: 13]. In this extension, the Leu-Glu codons determine the Xho I restriction site (underlined) allowing the cloning of the gene of interest flush with the Kex2 cleavage site. The LY-MPLG2 primer had an annealing region corresponding to the last 15 seven residues of plasminogen, followed by a TAA stopcodon and a non-annealing region comprising a XbaI recognition sequence.

The amplified fragment having the expected size (~780 bp) was digested with XhoI and XbaI, and directionally cloned 20 into the vector pPICZaA. The recipient vector-fragment was prepared by XhoI and XbaI restriction, and purified from agarose gel using the Qiaquick gel extraction kit (Qiagen GmbH, Germany). The E. coli strain TG1 (DSMZ collection #1208, Germany) was transformed with the ligation mixture, 25 and zeocin resistant clones were selected. Based on restriction analysis, a plasmid clone containing an insert of the expected size was retained for further characterization. Sequence determination of the vector pPICZ α -MPLG1 (clone #5) confirmed the precise insertion of the microplas- $_{30}$ minogen coding region fused to the a factor mating signal, as wel as the absence of unwanted mutations in the coding region. The primers 5'AOX and 3'AOX were provided in the EasySelect Pichia expression kit from Invitrogen, Carlsbad, Calif. 35

The determined nucleotide sequence and the deduced amino-acid sequence of human microplasminogen used are represented in SEQ.ID No. 3 and SEQ.ID No. 4, respectively. Compared to the sequence previously determined by Forsgren et al. in FEBS Lett. (1987) 213: 254, the nucleotide 40 sequence differs in 10 positions. However, the amino acid sequence was identical.

Expression Vector Construction for Miniplasminogen

A pPICZ α -derived secretion vector was constructed as follows for miniplasminogen expression, making use of the hereinabove described pPICZa-MPLGI vector.

The vector FdTet-SN-miniPIg disclosed by Lasters et al. (cited supra) was used to isolate by amplification ("PCRrescue") a 500 bp DNA fragment encoding kringle five and 50 part of the catalytic domain of the miniplasminogen protein. After a DNA template denaturation step of 3 minutes at 94° C., 30 temperature cycles were performed (10 seconds at 94° C., 10 seconds at 50° C., 15 seconds at 72° C.), followed by a 2 minutes final elongation step at 72° C. The following oligonucleotide primers LY-MINPLG1 (sense) and LY-MIN- 55 PLG2 (antisense) were used in this reaction:

non-annealing extension which included the last four residues of the factor mating signal (Leu-Glu-Lys-Arg) [SEQ ID. NO: 13]. In this extension, the Leu-Glu codons determine the Xho I restriction site allowing the cloning of the gene of interest flush with the Kex2 cleavage site.

The LY-MINPLG2 primer has an annealing region corresponding to the residues 596-604 of plasminogen (Glu-Trp-Val-Leu-Thr-Ala-Ala-His-Cys) [SEQ ID. NO: 15]. This annealing region of the catalytic domain, also present in the microplasminogen expression vector, comprises a unique Pst I recognition sequence (underlined).

The amplified fragment having the expected size was digested with XhoI and PstI, and directionally cloned into the vector pPICZa-MPLG1 described above (microplasmin expression vector). The recipient vector-fragment was prepared by XhoI and PstI restriction, and purified from agarose gel using the Qiaquick gel extraction kit (Qiagen GmbH, Germany). The E. coli strain TGI (DSMZ collection #1208, Germany) was transformed with the ligation mixture, and zeocin resistant clones were selected. Based on restriction analysis, a plasmid clone containing an insert of the expected size was retained for further characterization. Sequence determination of the vector pPICZa-KMPLGI (clone #3) confirmed the precise insertion of the amplified fragment fused to the α -factor mating signal, as well as the absence of unwanted mutations in the cloned region (the primers LY-MINPLGI and LY-MINPLG2 were used).

EXAMPLE 2

High Level Expression and Purification of Recombinant Human Microplasminogen: Quantitative Activation and Stabilization of Microplasmin

10 µg of the vector pPICZα-MPLG1 was digested with Pmel, which linearizes the vector in the 5' AOX1 region. The DNA was concentrated to about 0.33 μ g/ μ l by precipitation, and 5 µl was used to transform competent Pichia pastoris X33 cells prepared according to the manual provided in the Easy-Select Pichia expression kit.

The selection of a high-expression strain was performed as follows. Zeocin resistant transformants were selected on YPDSZ plates (1% yeast extract, 2% peptone, 2% glucose, 1M sorbitol, 2% agar, 100 µg/ml zeocin). Thirty-four single colonies were inoculated in 10 ml BMYZ-glycerol medium (1% yeast extract, 2°/peptone, 1% glycerol, 100 mM potassium phosphate, pH 6.0, 1.34% yeast nitrogen base, 4×10^{-5} % biotin, 100 µg/ml zeocin) in 50 ml Falcon tubes and cultured for 16 hours at 30° C. The cells were pelleted and re-sus-

LY-MINPLG1: 5' GGGGTATCT CTC GAG AAA AGA GCA CCT CCG CCT GTT (SEQ.ID. No.9) GTC CTG CTT CC

LY-MINPLG2: 5' GCA GTG GG<u>C TGC A</u>GT CAA CAC CCA CTC

(SEQ.ID. No.10)

sponding to residues 444-452 of plasminogen (Ala-Pro-Pro-Pro-Val-Val-Leu-Leu-Pro) [SEQ ID. NO: 14] preceded by a

The LY-MINPLG1 primer has an annealing region corre- 65 pended in 2 ml of BMYZ-methanol medium (same as BMYZ-glycerol but with 0.5% methanol instead of glycerol) to induce expression from the AOX1 promoter, and cultured for 40 hours. 4 pulses of 0.5% methanol were regularly supplied to the cultures over this period. At the end of the induction culture, the presence of microplasminogen in the culture supernatant was estimated as described by Lijnen et al. in Eur. J. Biochem. (1981) 120:149. Briefly, the microplasminogen 5 in pure or 10-fold diluted supernatants were incubated with urokinase for 30 minutes to activate microplasminogen in microplasmin. The generated microplasmin activity, as determined by its amidolytic activity measured with the chromogenic substrate S2403 (available from Chromogenix, Antwerp, Belgium) at different times, was compared to the activity of known amounts of purified plasmin or microplasmin preparations. The clone X33-MPLG1 #5, showing the highest microplasmin activity after urokinase activation, was 15 selected for subsequent large scale production.

Fermentation of X33-MPLG1#5 at a 50 litre scale was carried out in four steps as follows. 2 I flask cell cultures were performed for 23 hours at 30° C. in 400 ml YSG+(yeast extract 6 g/l, soya peptone 5 g/l, glycerol 20 g/l) using an 20 inoculum of 0.7 ml of cell bank (glycerol OOC17) and 270 rpm agitation, yielding (at the end of the pre-culture step) an OD600 of 15. Fermentation was then performed in a MRP80 fermentation device in 30 I basal medium (26.7 ml/l H3PO4 85%; 1.05 g/l CaSO4.2H2O, 18.2 g/l K2SO4, 14.9 g/l 25 MgSO4.7H2O, 4.13 g/1KOH, 40 g/1 glycerol 100% and 4.76 mill PTM1 salt solution [comprising 6 g/l CuSO4.5H2O, 0.08 g/l NaI, 3.36 g/l MnSO4.H2O, 0.2 g/l NaMoO4.2H2O, 0.02 g/l Boric acid, 0.82 g/l CoCl2.6H₂O, 20 g/l ZnCl2, 65 g/l FeSO4.7H2O, 0.2 g/l d-biotin and 5 ml/l HSSO4]), using 600 30 ml inoculum at 30° C. with an air flow of 50 1/min at atmospheric pressure, dissolved oxygen (DO)>20% and 200-500 rpm agitation, pH being maintained at 5.8 with 12.5% ammonia. At 24 hours and OD 600 of 50 (end of batch step), glycerol depletion was evidenced by a rapid increase of dis- 35 solved oxygen. Glycerol feeding (632 g/l glycerol 100% and 12 ml/l PTM1) increased the OD 600 up to 258 in 24 hours. Methanol feeding was then carried out with an increasing flow of up to 250 ml/h within 6 hours, which was maintained for 66 hours using 988 ml/l methanol and 12 ml/l PTM1 to 40 reach an OD 600 of 352 at the end of culture. Fermentation of X33-MPLG1#5 at a 350 litre scale provided proportionally similar results.

The harvest was then purified in a three-steps process comprising cation exchange expanded bed chromatography, 45 b) Hydrophobic Chromatography hydrophobic chromatography and affinity chromatography as follows:

a) Cation Exchange Expanded Bed Chromatography

Cation exchange expanded bed adsorption chromatogra- 50 phy was conducted with Streamline SP (available from Pharmacia Biotechnology, Cat. No. 17-0993-01/02) packed in a Streamline 200 column (Pharmacia Biotechnology Cat No. 18-1100-22) with a bed volume of 5,120 cm³, expanded and equilibrated by applying an upward flow of 1 M NaCl, 25 mM 55 sodium acetate (CH₃COONa.3H₂O), buffer, pH 6.0, for two column volumes followed by column volumes of 25 mM sodium acetate buffer, pH 6.0. The fermentation broth was on line diluted $(7\times)$ with water and passed upwards through the expanded bed at a flow rate of 1000 ml/min. Loosely bound 60 material was washed out with the upward flow of 25 mM sodium acetate buffer pH 6.0. The column adaptor was then lowered to the surface of the sedimented bed at a height of 16.3 cm. Flow was reversed and the captured proteins eluted with 2 column volumes of 0.5 M NaCl, 25 mM sodium 65 acetate buffer, pH 6.0. Solid ammonium sulfate was added to the eluted Streamline fraction to reach 30% saturation (164 g

ammonium sulfate per liter of eluted Streamline fraction) and the mixture was gently stirred at 4-8° C. for 1 hour.

b) Hydrophobic Chromatography

Hydrophobic chromatography was conducted with Hexyl TSK 650C (available from Toso-Haas Cat. No. 19027) packed in a Vantage 180/500 column (available from Millipore, Cat. No. 87018001) with a pack d volume of 2,700 cm³ at 4-8° C. The eluted streamline fraction was loaded on the column at a flow rate of 38 1/hour. The column was then washed with 1.5 column volumes of 25 mM sodium acetate buffer, pH 6.0, containing 164 g/l ammonium sulfate and eluted from the column with 7 column volumes of 25 mM sodium acetate buffer, pH 6.0.

c) Affinity Chromatography

Affinity chromatography was conducted with Blue Sepharose 6 Fast Flow (available from Pharmacia Biotechnology, Cat. No. 17-0948-02/03) packed in a Vantage 130/ 500 column (available from Millipore, Cat. No. 87013001) with a packed volume of 3,186 cm3 at 4-8° C. The eluted fraction was loaded on the column at a flow rate of 20 l/hour, and washed with one column volume of 25 mM disodium hydrogenophosphate (Na₂HPO₄.12 H₂O) buffer, pH 7.0. The microplasminogen protein fraction was eluted from the column with 5 column volumes 0.5 M NaCl, 25 mM di-sodium hydrogenophosphate buffer, pH 7.0 and kept frozen at -20° C. The purity of the material was above 98% as demonstrated by SDS gel electrophoresis.

Quantitative Activation to and Stabilization of Microplasmin

a) Quantitative Activation

The activation of microplasminogen to microplasmin was performed at 23° C. for 30 minutes at a molar ratio of 0.5% of a staphylokinase variant SY162 in 0.5 M NaCl, 25 mM disodium hydrogenophosphate (Na₂HPO₄.12 H₂O) buffer, pH 7.0. SY162 is a staphylokinase variant with reduced immunogenicity comprising 12 amino-acid substitutions (K35A, E65Q, K74R, E80A, D82A, T90A, E99D, T101S, E108A, K109A, K130T and K135R) as compared to wild-type, as described by WO 99/40198. Solid ammonium sulfate was added to microplasmin at a final concentration of 1 M (132 g/l) and the mixture stirred at 4-8° C. for 15 minutes.

Hydrophobic chromatography was conducted with Phenyl Sepharose 6 Fast Flow (available from Pharmacia Biotechnology, Cat. No. 17-0965-03/05) packed in a BPG 100/500 column (available from Pharmacia Biotechnology, Cat. No. 18-1103-01) having a packed volume of 1,738 cm³, equilibrated with 4 column volumes of 25 mM Na₂HPO₄.12 H₂O buffer, pH 7.0, containing 0.1 M tranexamic acid (available from Boumonville Pharma, Braine-L'Alleud, Belgium) and 1 M (NH₄)₂SO4, pH 7.0, at 4-8° C. The activated product was loaded on the column at a linear flow rate of 18 l/hour and washed with 4.5 column volumes of 25 mM Na₂HPO₄.12 H₂O buffer, pH 7.0, containing 0.1 M tranexamic acid and 1 $M(NH_4)_2SO_4$. Microplasmin was eluted from the column at a linear flow rate of 6 l/hour with 5 column volumes of 25 mM Na₂HPO₄.12 H₂O buffer, pH 7.0, containing 0.1 M tranexamic acid and 0.7 M (NH₄)₂SO₄ and equilibrated with phosphate buffered saline containing 0.1 M tranexamic acid. Staphylokinase variant SY162 was eluted from the column with 25 mM Na₂HPO₄.12 H₂O buffer, pH 7.0 containing 0.1 M tranexamic acid. This procedure removed above 99% of staphylokinase from the microplasmin peak as demonstrated with a specific ELISA assay.

c) Concentration and Diafiltration by Tangential Ultrafiltration

Ultrafiltration was conducted with 2 Pellicon 2 Biomax membranes (5 kDa, 2.5 µm, available from Millipore, Bedford, Mass., Cat. nº P2B005A25) at 2-8° C. The membranes 5 were mounted in a Pellicon 2 Process Holder connected to a Microgon pump Cart System (available from Microgon, Laguna Hills, Calif.). The membranes were washed with purified water and membrane integrity tested before operation. The sanitization was performed by continuous recircu- 10 lation with 0.5 M NaOH for 60 minutes and with 0.1 M NaOH during 60 minutes. The membranes were then rinsed with 5 mM citric acid, pH 3.1, until the permeate reached a pH of 3.1. The pH of the Phenyl Sepharose eluate was adjusted to 3.1 and the protein was concentrated to 4 mg/ml by ultrafiltration. 15 Diafiltration was performed for 60 to 90 minutes against 5 volumes of 5 mM citric acid, pH 3.1. Yields (expressed in grams) of three runs performed on a 50 litre fermentation apparatus are summariz d in the following Table 1 (ND : not determined).

TABLE 1

	Run 1	Run 2	Run 3	
Fermentor	220	240	ND	25
Streamline	50	79	130	
Hexyl	36	37	ND	
Blue	25	28	30	
Phenyl	17	20	26	
Diafiltration			22	
				20

d) Sterile Filtration (0.2 μ m)

Mannitol was added at 2-8° C. to a concentration of 1.5 g/g of protein and sterile filtration performed at 23° C. on a Millipak 100 filter (size 500 cm²) (available from Millipore, ³⁵ Cat. No. MPGL10CA3) and rinsed with about 500 ml of 5 mM citric acid, pH 3.1, with a peristaltic pump at a flow rate of 500 ml/minute. The filtrate was collected in a sterile and pyrogen free bag and stored at -20° C.

EXAMPLE 3

Expression of Recombinant Human Miniplasminogen

About 15 μ g of the vector pPICZ α -KMPLG1 was digested in a 20 ul reaction with Pmel, which linearizes the vector in the 5' AOX1 region. The linear DNA (3 µg) was used to transform competent Pichia pastoris X33 cells prepared according to the manual provided in the EasySelect Pichia 50 Expression kit.

The selection of high-expression strain was performed essentially as follows. Zeocin resistant transformants were selected on YPDSZ plates (as defined in example 2). Fifty isolated colonies were inoculated in 15 ml BMYZ-glycerol 55 medium (as d fined in example 2) in 50 ml Falcon tubes and cultured for 16 hours at 30° C. The cells were pelleted and re-suspended in 1.5 ml of BMYZ-methanol medium (as defined in example 2) to induce expression from the AOX1 promoter, and cultured for 40 hours. 3 or 4 pulses of 0.5% 60 methanol were regularly supplied to the cultures over this period. At the end of the induction culture, the presence of miniplasminogen in the culture supernatant was estimated as described by Lijnen et al. (cited supra). Briefly, the miniplasminogen in 10-fold diluted supernatants were incubated with 65 streptokinase for 10 minutes to form an active complex. The generated miniplasmin activity, as determined with the chro-

mogenic substrate S2403 (see example 2) at different times, was compared to the activity of known amounts of a purified plasminogen preparation. In these conditions, all tested clones were producing miniplasminogen with yields varying between 3 and 15 mg/l. The two clones X33-KMPLG1 #6 and X33-KMPLG1 #25, showing the highest miniplasmin activity, were selected for subsequent large scale production.

EXAMPLE 4

Murine Cerebral Ischemic Infarction Model (General Procedure)

Experiments were conducted according to the guiding principles of the American Physiological Society and the International Committee on Thrombosis and Haemostasis as disclosed by Giles in Thromb. Haemost. (1987) 58:1078.

Focal cerebral ischemia was produced by persistent occlusion of the middle cerebral artery (hereinafter MCA) accord-20 ing to Welsh et al. in J. Neurochem. (1987) 49:846. Briefly, mice of either sex, weighing 20 to 30 g, were anesthetized by intraperitoneal injection of 75 mg/ml ketamine (available from Apharmo, Arnhem, The Netherlands) and 5 mg/ml xylazine (available from Bayer, Leverkusen, Germany). Alternatively, in order to ensure that these drugs did not affect cerebral infarct size, anesthesia was performed with inhalation of 2% isoflurane in oxygen. 1 mg/kg atropine (available from Federa, Brussels, Belgium) was administered intramuscularly, and rectal temperature was maintained at 37° C. by keeping the animals on a heating pad. A "U" shape incision was made between the left ar and left eye. The top and backside segments of the temporal muscle were transsected and the skull was exposed by retraction of the temporal muscle. A 1 mm diameter opening was made in the region ov r the MCA with a hand-held drill, with saline superfusion to prevent heat injury. The meninges were removed with a forceps and the MCA was occluded by ligation with a 10-0 nylon thread (available from Ethylon, Neuilly, France) and trans-sected distally to the ligation point. Finally the temporal muscle and skin were sutured back in place. The recombinant microplas-40 min produced in example 2 was then given intravenously as a bolus, 15 minutes after ligation of the MCA unless otherwise indicated. The animals were allowed to recover. After 24 hours, the animals were sacrificed with 500 mg/kg Nembutal (available from Abbott Laboratories, North Chicago, Ill.) and decapitated. The brain was removed and placed in a matrix for sectioning in 1 mm segments. The sections were immersed in 2% 2,3,5-triphenyltetrazolium chloride in saline, incubated for 30 minutes at 37° C., and placed in 4% formalin in phosphate buffered saline. With this procedure, the necrotic infarct area remains unstained and is clearly distinguishable from stained viable tissue. The sections were photographed and subjected to planimetry. The volume of the focal cerebral ischemic injury was defined as the sum of the unstained areas of the sections, multiplied by their thickness.

 α_2 -Antiplasmin levels in murine plasma were measured by a chromogenic substrate assay, based on its rapid inhibition of plasmin, according to the procedure described by Edy et al. in Thromb. Res. (1976) 8:513. Briefly, 10 µl murine plasma (diluted 1/10 in 0.05 M NaH₂PO₄ buffer, pH 7.4, containing 0.01 percent Tween 20) was mixed at 37° C. with 420 µl 0.05 M Tris.HCl, 0.1 M NaCl buffer, pH 7.4, containing 0.01% Tween 20, and with 20 µl of 0.125 µM human plasmin (final concentration 5 nM). After 10 seconds incubation, 50 µ of 3 mM S2403 (Chromogenix, Antwerp, Belgium) was added and the change in absorbance measured at 405 nm. Changes in absorbance of 0.18 min⁻¹ for buffer and 0.09 min⁻¹ for

10

35

40

45

55

60

65

pooled murine plasma were used for the construction of a calibration curve. Data are presented in tables 2a and 2b.

EXAMPLE 5

Effect of Recombinant Human Microplasmin on Cerebral Infarct Size In Mic

Effect of Recombinant Microplasmin on α -antiplasmin and Fibrinogen Levels

Effects of an intravenous bolus injection of the recombinant human microplasmin of example 2 in inbred BALB/c mice on plasma %-antiplasmin and fibrinogen levels are summarized in Table 2a. The α_2 -antiplasmin and fibrinogen levels decreased proportionally to the microplasmin dose and partially recovered within one hour, suggesting that α_2 -antiplasmin depletion was transient during the first few hours after the single bolus injection of microplasmin.

Effect of Recombinant Microplasmin on Cerebral Infarct $_{\rm 20}$ Size

Ligation of the MCA induced a cerebral infarct with a volume of 29 μ l in inbred BALB/c mice (Table 2b). Injection of 0.07 mg recombinant human microplasmin had no significant effect on infarct size, whereas injection of 0.13 mg ²⁵ microplasmin or more produced a significant reduction of cerebral infarct size. This is consistent with the above transient minor reduction of α_2 -antiplasmin with the lower dose and the more persistent depletion obtained with 0.2 mg microplasmin. 30

TABLE 2a

	Dose	Resi α_2 -antiple	dual asmin (%)	Residual Fibrinogen (%)		
Compound	(mg)	15 min.	1 h.	15 min.	1 h.	
Saline Microplasmin	0.07 0.13 0.20	99 58 14 0		100 93 33 ND	— 79 17 ND	

ND: not determined

TABLE 2b

Compound	Dose (mg)	Cerebral Infarct Size (mm ³)	p*	_
Saline		29 (27-30)		-
id.	0.07	29 (27-30) 26 (21-28)	0.74 0.041	50
id.	0.13 + 0.07**	26 (20-28)	0.02	

The data represent median and range of values obtained in 6 experiments *versus saline

**injected 15' and 60' after MCA occlusion respectively

EXAMPLE 6

Rabbit Extracorporeal Loop Thrombolysis Model (General Procedure)

A simple extracorporeal loop thrombosis model in rabbits was used for the quantitative evaluation of the thrombolytic effect of human plasmin and microplasmin, as disclosed by Hotchkiss et al. in Thromb. Haemost. (1987) 58:107.

New Zealand white rabbits with a body weight of 2.6-3.2 kg were anesthesized by intramuscular injection of 1.0 of 2%

xylazine and 0.5 ml of ketamine (same suppliers as in example 4). Additional Nembutal (12 mg/hour) was administered to maintain anesthesia. Thyroidal uptake of radioiodide was blocked by administration of sodium iodide (0.5 ml of a 2% solution). A femoral vein catheter was introduced for blood sampling and a femoral artery catheter for blood pressure measurement (PDCR 75 from Druck Ltd, Leicester, United Kingdom).

A 300 µl thrombus was formed around a woollen thread introduced longitudinally in each of two adapted insulin syringes from a mixture of 125I-labeled fibrinogen (approximately 400,000 cpm), platelet poor rabbit plasma, and 0.07 ml thrombin solution (100 NIH U/ml). In all instances, the clot formed quickly and was allowed to age for 30 minutes at 37° C. The two syringes were then inserted in an extracorporeal loop of silicon tubing between a femoral artery and a marginal ear vein. The blood flow was regulated via a peristaltic pump (P1 available from Pharmacia LKB, Piscataway, N.J.). Thrombotic extension of the clot was prevented by infusion of heparin (300 U/kg bolus followed by 200 U/kg over 2 hours) and the platelet aggregation inhibitor Ridogrel (7.5 mg/kg) bolus, 30 minutes before starting infusion of wild-type plasmin (available from Janssen Research Foundation, Beerse, Belgium) or the recombinant microplasmin obtained in example 2. The extent of thrombolysis was measured as the difference between the radioactivity introduced in the clot and that recovered in the syringes at the end of the experiment.

Local infusion was carried out by using a constant rate infusion pump (Perfuser VI, available from B. Braun, Penang, Malaysia), through a three-ways valve, in a volume of 6 ml over 2 hours proximal to the first inserted syringe in the extracorporal loop. The extent of thrombolysis was calculated 2.5 hours after starting infusion, as the difference between the radioactivity originally incorporated in the clot and the radioactivity in the syringe, and expressed as a percentage of the initial radioactivity.

2-ml blood samples were drawn into trisodium citrate (final concentration 0.011 M) before starting infusion and at hourly intervals for 2 hours. These samples were used for measurements of fibrinogen, ct-antiplasmin, and activated partial thromboplasmin time. Bleeding times were performed by applying a Symplate II device (available from Organon Technica, Durham, N.C.) to a shaved inner thigh surface.

EXAMPLE 7

Effect of Recombinant Microplasmin on Extracorporeal Loop Clot Lysis

Results of the determinations made in accordance with the general procedure of example 6 are presented in the following Table 3. Clot lysis with the recombinant microplasmin of example 2 produced minor α_2 -antiplasmin depletion and fibrinogen breakdown and was associated with minor bleeding time prolongation. Infusion of wild-type plasmin resulted in a r duction of 80% of α_2 -antiplasmin and fibrinogen levels, with minor effect on the bleeding time. These findings indicate that the extent of clot lysis by recombinant microplasmin and wild-type plasmin is mainly determined by the dose of the drug and its delivery in the vicinity of the thrombus. Thrombolysis with recombinant microplasmin or wild-type plasmin thus was not associated with extensive systemic activation of the fibrinolytic system as evidenced by the moderate changes in fibrinogen, α_2 -antiplasmin and bleeding time.

TABLE 3

Substance	Blood flow (ml/min)	Dose (mg/kg)	Clot Lysis (percent)	Residual Fibrinogen (percent)*	Residual α ₂ -anti- plasmin (percent)*	Bleeding time (sec)*
Solvent		_	26	110	110	90
Micro-	0.5	0.6	43	93	97	95
plasmin		1.3	46	93	96	145
		2.5	51	79	71	120
		3.8	64	77	71	150
		5.0	60	67	67	90
	0.1	2.5	80	87	87	98
Plasmin	0.5	2.5	44	82	80	170
		5.0	53	80	86	170
	0.1	2.5	56	93	120	

*at the end of the infusion.

EXAMPLE 8

Dog Circumflex Coronary Artery Copper Coil-Induced Thrombosis (General Procedure)

A copper coil was introduced in the coronary artery for the quantitative evaluation of the thrombolytic effect of human 25 wild-type plasmin and recombinant microplasmin as described by Bergmann et al. in Science (1983) 220:1181-1183. Dogs were anesthesized by intravenous injection of 30 mg/kg Nembutal of after prem dication by intramuscular injection with atropine 12.5 μ g/kg and ketamine 10 mg/kg 30 (same suppliers as in example 4). Anesthesia was maintained by Nembutal infusion of 8 to 10 mg/kg/hour. After pre-medication, an intravenous line is introduced in the front leg vein and fix. This intravenous line is taken for anaesthetic drug administration and infusion. A second venous access line is 35 introduced in a saphenous vein for heparin administration. During further preparation the line is kept open with a saline infusion at approx. 20 ml/hour. The femoral artery is exposed via an incision close to the groin and a catheter is introduced for blood sampling. The right and left carotid arteries are 40 exposed for coronary catheterisation. ECG electrodes and a rectal temperature probe are placed for continuous monitoring of the ECG and the body temperature. The copper coil should be rinsed with 50% acetic acid to remove oxidation to have an optimal thrombogenic copper surface. A Lehman 45 catheter (5 Fg, USCI Bard) is connected to the angiographic valve system introduced into the left carotid artery and advanced into the left coronary artery. An angiogram is performed to identify the position of the first major side branch of the circumflex artery. The angiographic valve system is dis- 50 connected and thin guide wire is introduced through the Lehman catheter and positioned distally to the first dominant side branch. The angiographic valve system should have the following connections: contrast medium, pressurized saline, pressure transducer (to monitor non occlusive catheter place- 55 ment) and infusion line for intracoronary recombinant microplasmin administration. The Lehman catheter is retracted and removed, while the guidewire is kept in position. Over this guide wire the copper coil, fixed to a second guidewire is introduced and advanced into the circumflex artery and 60 placed distally to the first dominant side branch. A selection of copper coils is available and the best estimated size used e.g. a 3-mm copper coil (six turns of a 0.5 mm copper wire). The coil must be distal from the predominant side branch if not fibrillation upon occlusion might occur. The central guide 65 wire is removed. Via the right carotid artery the Lehman catheter is reintroduced to perform the angiograms through-

out the remaining part of the study. The formation of a throm-20 botic occlusion is monitored by electrocardiographic measurements or by angiography via the right carotid artery. The occlusion was confirmed by angiography. The occlusion is aged for 60 minutes. An angiogram is then performed to confirm total occlusion of the artery and the Lehman catheter is left in place, proximal to the thrombus without occlusion of the circumflex coronary artery for administration of recombinant microplasmin and to perform the angiograms. Then a heparin 200 units/kg intravenous bolus followed by a 40 units/kg/hour infusion at 1 ml/min intravenous infusion throughout the experiment is given via the saphenous vein catheter. Five minutes after heparin bolus administration, a first bolus over 5 minutes of 40% of the recombinant microplasmin dose is administered intracoronary via the Lehman catheter. If occlusion persists after 15 minutes, as evidenced by angiography, the remaining 60% of the recombinant microplasmin dose will be infused intracoronary over 1 hour. Reperfusion and reocclusion are evaluated angiographically at 15 minutes intervals or whenever electrocardiographic signs suggestive for reperfusion or re-occlusion occurred. At the end of the experiment, the animals are killed by administering an overdose of pentobarbital (10 ml of 60 mg/ml intravenously). Six blood samples of 4.5 ml blood are taken 0.5 ml 3.8% trisodium citrate (final concentration 0.011 M) and kept on ice. The timing of the blood samples was baseline (after 45 minutes of stable occlusion, 2 minutes after heparin bolus but before recombinant microplasmin administration, 5 minutes after recombinant microplasmin bolus administration, at end of infusion and 120 minutes after the end of the infusion). These samples are centrifugated at 2000 rpm for 10 minutes at 4° C. The plasma is collected and frozen at -20° C. for determination of fibrinogen and α_2 -antiplasmin according to Edy et al.(cited supra).

EXAMPLE 9

Effect of Recombinant Microplasminogen on Copper-Coil Induced Myocardial Infarction

Results of the determinations made in accordance with the general procedure of example 8 are presented in table 4 and FIG. **2**. An erythrocyte-rich thrombus was formed within 15 minutes after introduction of the copper coil as evidenced electrocardiographic signs induced by the transmural ischemia and confirmed angiography via the right carotid artery. Two doses of the recombinant microplasminogen of example 2 were investigated in four animals per group. The

first group received a bolus of 2 mg/kg over 5 minutes and, if occlusion persisted 15 minutes later as evidenced by angiography, a residual dose of 3 mg/kg was initiated over one hour. The second group received a bolus of 1 mg/kg and, if occlusion persisted 15 minutes later as evidenced by angiography, 5 infusion of the residual 1.5 mg/kg was initiated over one hour.

In the first group, three dogs treated with the 2 mg/kg had a complete and persistent resolution of the thrombus within 15 minutes after administration. In the fourth dog, a complete 20

and persistent partial recanalisation occurred after administration of the full dose (figure). In the second group, one dog had a complete and persistent reperfusion 15 minutes after bolus injection. In the remaining three dogs, the bolus followed by a 1 hour infusion of 1.5 m/kg induced a complete and persistent recanalisation (figure).

As shown in table 4, administration of recombinant microplasminogen induced only a partial decrease of fibrinogen and $\alpha 2$ -antiplasmin.

TABLE 4

		α_2 -antiple	asmin (%)				
			15			Fibrin	ogen (g/l)	
Total Dose (mg/kg)	Baseline	After heparin	min after bolus	End of experiments	Baseline	After heparin	15 min after bolus	End of experiments
2 2.5	105 106	97 105	45 83	56 58	1.43 1.78	1.40 1.88	0.73 1.37	0.74 1.03

SEQUENCE LISTING

<160)> NU	JMBEF	t of	SEQ	ID 1	10S :	10									
<210 <211 <212)> SH L> LH 2> TY	EQ II ENGTH (PE:) NO 1: 24 DNA	1 133												
<213	8> OF	RGAN	ISM:	Homo	s sar	lens	3									
<220)> FE > NA	ATUR ME/F	KE: KEY:	CDS												
<222	2> LC	CAT	ION:	(1).	(2	2433)										
<400)> SI	EQUEI	ICE :	1												
atg Met 1	gaa Glu	cat His	aag Lys	gaa Glu 5	gtg Val	gtt Val	ctt Leu	cta Leu	ctt Leu 10	ctt Leu	tta Leu	ttt Phe	ctg Leu	aaa Lys 15	tca Ser	48
ggt Gly	caa Gln	gga Gly	gag Glu 20	cct Pro	ctg Leu	gat Asp	gac Asp	tat Tyr 25	gtg Val	aat Asn	acc Thr	cag Gln	30 30 30	gct Ala	tca Ser	96
ctg Leu	ttc Phe	agt Ser 35	gtc Val	act Thr	aag Lys	aag Lys	cag Gln 40	ctg Leu	gga Gly	gca Ala	gga Gly	agt Ser 45	ata Ile	gaa Glu	gaa Glu	144
tgt Cys	gca Ala 50	gca Ala	aaa Lys	tgt Cys	gag Glu	gag Glu 55	gac Asp	gaa Glu	gaa Glu	ttc Phe	acc Thr 60	tgc Cys	agg Arg	gca Ala	ttc Phe	192
caa Gln 65	tat Tyr	cac His	agt Ser	aaa Lys	gag Glu 70	caa Gln	caa Gln	tgt Cys	gtg Val	ata Ile 75	atg Met	gct Ala	gaa Glu	aac Asn	agg Arg 80	240
aag Lys	tcc Ser	tcc Ser	ata Ile	atc Ile 85	att Ile	agg Arg	atg Met	aga Arg	gat Asp 90	gta Val	gtt Val	tta Leu	ttt Phe	gaa Glu 95	aag Lys	288
aaa Lys	gtg Val	tat Tyr	ctc Leu 100	tca Ser	gag Glu	tgc Cys	aag Lys	act Thr 105	999 Gly	aat Asn	gga Gly	aag Lys	aac Asn 110	tac Tyr	aga Arg	336
д1Х ддд	acg Thr	atg Met 115	tcc Ser	aaa Lys	aca Thr	aaa Lys	aat Asn 120	ggc Gly	atc Ile	acc Thr	tgt Cys	caa Gln 125	aaa Lys	tgg Trp	agt Ser	384
tcc Ser	act Thr 130	tct Ser	ccc Pro	cac His	aga Arg	cct Pro 135	aga Arg	ttc Phe	tca Ser	cct Pro	gct Ala 140	aca Thr	cac His	ccc Pro	tca Ser	432

-continued

gag Glu 145	gga Gly	ctg Leu	gag Glu	gag Glu	aac Asn 150	tac Tyr	tgc Cys	agg Arg	aat Asn	cca Pro 155	gac Asp	aac Asn	gat Asp	ccg Pro	cag Gln 160	480
gjà aaa	ccc Pro	tgg Trp	tgc Cys	tat Tyr 165	act Thr	act Thr	gat Asp	cca Pro	gaa Glu 170	aag Lys	aga Arg	tat Tyr	gac Asp	tac Tyr 175	tgc Cys	528
gac Asp	att Ile	ctt Leu	gag Glu 180	tgt Cys	gaa Glu	gag Glu	gaa Glu	tgt Cys 185	atg Met	cat His	tgc Cys	agt Ser	gga Gly 190	gaa Glu	aac Asn	576
tat Tyr	gac Asp	ggc Gly 195	aaa Lys	att Ile	tcc Ser	aag Lys	acc Thr 200	atg Met	tct Ser	gga Gly	ctg Leu	gaa Glu 205	tgc Cys	cag Gln	gcc Ala	624
tgg Trp	gac Asp 210	tct Ser	cag Gln	agc Ser	cca Pro	cac His 215	gct Ala	cat His	gga Gly	tac Tyr	att Ile 220	cct Pro	tcc Ser	aaa Lys	ttt Phe	672
cca Pro 225	aac Asn	aag Lys	aac Asn	ctg Leu	aag Lys 230	aag Lys	aat Asn	tac Tyr	tgt Cys	cgt Arg 235	aac Asn	ccc Pro	gat Asp	agg Arg	gag Glu 240	720
ctg Leu	cgg Arg	cct Pro	tgg Trp	tgt Cys 245	ttc Phe	acc Thr	acc Thr	gac Asp	ccc Pro 250	aac Asn	aag Lys	cgc Arg	tgg Trp	gaa Glu 255	ctt Leu	768
tgc Cys	gac Asp	atc Ile	ccc Pro 260	cgc Arg	tgc Cys	aca Thr	aca Thr	cct Pro 265	cca Pro	cca Pro	tct Ser	tct Ser	ggt Gly 270	ccc Pro	acc Thr	816
tac Tyr	cag Gln	tgt Cys 275	ctg Leu	aag Lys	gga Gly	aca Thr	ggt Gly 280	gaa Glu	aac Asn	tat Tyr	cgc Arg	999 Gly 285	aat Asn	gtg Val	gct Ala	864
gtt Val	acc Thr 290	gtt Val	tcc Ser	gjà aaa	cac His	acc Thr 295	tgt Cys	cag Gln	cac His	tgg Trp	agt Ser 300	gca Ala	cag Gln	acc Thr	cct Pro	912
cac His 305	aca Thr	cat His	aac Asn	agg Arg	aca Thr 310	cca Pro	gaa Glu	aac Asn	ttc Phe	ccc Pro 315	tgc Cys	aaa Lys	aat Asn	ttg Leu	gat Asp 320	960
gaa Glu	aac Asn	tac Tyr	tgc Cys	cgc Arg 325	aat Asn	cct Pro	gac Asp	gga Gly	aaa Lys 330	agg Arg	gcc Ala	cca Pro	tgg Trp	tgc Cys 335	cat His	1008
aca Thr	acc Thr	aac Asn	agc Ser 340	caa Gln	gtg Val	cgg Arg	tgg Trp	gag Glu 345	tac Tyr	tgt Cys	aag Lys	ata Ile	ccg Pro 350	tcc Ser	tgt Cys	1056
gac Asp	tcc Ser	tcc Ser 355	cca Pro	gta Val	tcc Ser	acg Thr	gaa Glu 360	caa Gln	ttg Leu	gct Ala	ccc Pro	aca Thr 365	gca Ala	cca Pro	cct Pro	1104
gag Glu	cta Leu 370	acc Thr	cct Pro	gtg Val	gtc Val	cag Gln 375	gac Asp	tgc Cys	tac Tyr	cat His	ggt Gly 380	gat Asp	gga Gly	cag Gln	agc Ser	1152
tac Tyr 385	cga Arg	ggc Gly	aca Thr	tcc Ser	tcc Ser 390	acc Thr	acc Thr	acc Thr	aca Thr	gga Gly 395	aag Lys	aag Lys	tgt Cys	cag Gln	tct Ser 400	1200
tgg Trp	tca Ser	tct Ser	atg Met	aca Thr 405	cca Pro	cac His	cgg Arg	cac His	cag Gln 410	aag Lys	acc Thr	cca Pro	gaa Glu	aac Asn 415	tac Tyr	1248
cca Pro	aat Asn	gct Ala	ggc Gly 420	ctg Leu	aca Thr	atg Met	aac Asn	tac Tyr 425	tgc Cys	agg Arg	aat Asn	cca Pro	gat Asp 430	gcc Ala	gat Asp	1296
aaa Lys	ggc Gly	ccc Pro 435	tgg Trp	tgt Cys	ttt Phe	acc Thr	aca Thr 440	gac Asp	ccc Pro	agc Ser	gtc Val	agg Arg 445	tgg Trp	gag Glu	tac Tyr	1344
tgc Cys	aac Asn 450	ctg Leu	aaa Lys	aaa Lys	tgc Cys	tca Ser 455	gga Gly	aca Thr	gaa Glu	gcg Ala	agt Ser 460	gtt Val	gta Val	gca Ala	cct Pro	1392

-continued

ccg Pro 465	cct Pro	gtt Val	gtc Val	ctg Leu	ctt Leu 470	cca Pro	gat Asp	gta Val	gag Glu	act Thr 475	cct Pro	tcc Ser	gaa Glu	gaa Glu	gac Asp 480	1440
tgt Cys	atg Met	ttt Phe	с1 ааа	aat Asn 485	д1у ддд	aaa Lys	gga Gly	tac Tyr	cga Arg 490	ggc Gly	aag Lys	agg Arg	gcg Ala	acc Thr 495	act Thr	1488
gtt Val	act Thr	glà aaa	acg Thr 500	cca Pro	tgc Cys	cag Gln	gac Asp	tgg Trp 505	gct Ala	gcc Ala	cag Gln	gag Glu	ccc Pro 510	cat His	aga Arg	1536
cac His	agc Ser	att Ile 515	ttc Phe	act Thr	cca Pro	gag Glu	aca Thr 520	aat Asn	cca Pro	cgg Arg	gcg Ala	ggt Gly 525	ctg Leu	gaa Glu	aaa Lys	1584
aat Asn	tac Tyr 530	tgc Cys	cgt Arg	aac Asn	cct Pro	gat Asp 535	ggt Gly	gat Asp	gta Val	ggt Gly	ggt Gly 540	ccc Pro	tgg Trp	tgc Cys	tac Tyr	1632
acg Thr 545	aca Thr	aat Asn	cca Pro	aga Arg	aaa Lys 550	ctt Leu	tac Tyr	gac Asp	tac Tyr	tgt Cys 555	gat Asp	gtc Val	cct Pro	cag Gln	tgt Cys 560	1680
gcg Ala	gcc Ala	cct Pro	tca Ser	ttt Phe 565	gat Asp	tgt Cys	ggg Gly	aag Lys	cct Pro 570	caa Gln	gtg Val	gag Glu	ccg Pro	aag Lys 575	aaa Lys	1728
tgt Cys	cct Pro	gga Gly	agg Arg 580	gtt Val	gtg Val	ggg Gly	gga gga	tgt Cys 585	gtg Val	gcc Ala	cac His	cca Pro	cat His 590	tcc Ser	tgg Trp	1776
ccc Pro	tgg Trp	caa Gln 595	gtc Val	agt Ser	ctt Leu	aga Arg	aca Thr 600	agg Arg	ttt Phe	gga Gly	atg Met	cac His 605	ttc Phe	tgt Cys	gga Gly	1824
ggc Gly	acc Thr 610	ttg Leu	ata Ile	tcc Ser	cca Pro	gag Glu 615	tgg Trp	gtg Val	ttg Leu	act Thr	gct Ala 620	gcc Ala	cac His	tgc Cys	ttg Leu	1872
gag Glu 625	aag Lys	tcc Ser	cca Pro	agg Arg	cct Pro 630	tca Ser	tcc Ser	tac Tyr	aag Lys	gtc Val 635	atc Ile	ctg Leu	ggt Gly	gca Ala	cac His 640	1920
caa Gln	gaa Glu	gtg Val	aat Asn	ctc Leu 645	gaa Glu	ccg Pro	cat His	gtt Val	cag Gln 650	gaa Glu	ata Ile	gaa Glu	gtg Val	tct Ser 655	agg Arg	1968
ctg Leu	ttc Phe	ttg Leu	gag Glu 660	ccc Pro	aca Thr	cga Arg	aaa Lys	gat Asp 665	att Ile	gcc Ala	ttg Leu	cta Leu	aag Lys 670	cta Leu	agc Ser	2016
agt Ser	cct Pro	gcc Ala 675	gtc Val	atc Ile	act Thr	gac Asp	aaa Lys 680	gta Val	atc Ile	cca Pro	gct Ala	tgt Cys 685	ctg Leu	cca Pro	tcc Ser	2064
cca Pro	aat Asn 690	tat Tyr	gtg Val	gtc Val	gct Ala	gac Asp 695	cgg Arg	acc Thr	gaa Glu	tgt Cys	ttc Phe 700	atc Ile	act Thr	ggc Gly	tgg Trp	2112
gga Gly 705	gaa Glu	acc Thr	caa Gln	ggt Gly	act Thr 710	ttt Phe	gga Gly	gct Ala	ggc Gly	ctt Leu 715	ctc Leu	aag Lys	gaa Glu	gcc Ala	cag Gln 720	2160
ctc Leu	cct Pro	gtg Val	att Ile	gag Glu 725	aat Asn	aaa Lys	gtg Val	tgc Cys	aat Asn 730	cgc Arg	tat Tyr	gag Glu	ttt Phe	ctg Leu 735	aat Asn	2208
gga Gly	aga Arg	gtc Val	caa Gln 740	tcc Ser	acc Thr	gaa Glu	ctc Leu	tgt Cys 745	gct Ala	ggg Gly	cat His	ttg Leu	gcc Ala 750	gga Gly	ggc Gly	2256
act Thr	gac Asp	agt Ser 755	tgc Cys	cag Gln	ggt Gly	gac Asp	agt Ser 760	gga Gly	ggt Gly	cct Pro	ctg Leu	gtt Val 765	tgc Cys	ttc Phe	gag Glu	2304
aag Lys	gac Asp 770	aaa Lys	tac Tyr	att Ile	tta Leu	caa Gln 775	gga Gly	gtc Val	act Thr	tct Ser	tgg Trp 780	ggt Gly	ctt Leu	ggc Gly	tgt Cys	2352

-continued

gca Ala 785	cgc Arg	ccc Pro	aat Asn	aag Lys	cct Pro 790	ggt Gly	gtc Val	tat Tyr	gtt Val	cgt Arg 795	gtt Val	tca Ser	agg Arg	ttt Phe	gtt Val 800	2400
act Thr	tgg Trp	att Ile	gag Glu	gga Gly 805	gtg Val	atg Met	aga Arg	aat Asn	aat Asn 810	taa *						2433
<210 <211 <212 <213)> SE L> LE 2> TY 3> OF	EQ II ENGTH PE : RGANJ) NO 1: 81 PRT [SM:	2 LO Homo	sar	piens	3									
<400)> SE	QUEN	ICE :	2												
Met 1	Glu	His	Lys	Glu 5	Val	Val	Leu	Leu	Leu 10	Leu	Leu	Phe	Leu	Lys 15	Ser	
Gly	Gln	Gly	Glu 20	Pro	Leu	Asp	Asp	Tyr 25	Val	Asn	Thr	Gln	Gly 30	Ala	Ser	
Leu	Phe	Ser 35	Val	Thr	Lys	ГЛЗ	Gln 40	Leu	Gly	Ala	Gly	Ser 45	Ile	Glu	Glu	
Сүз	Ala 50	Ala	Lys	Сүз	Glu	Glu 55	Asp	Glu	Glu	Phe	Thr 60	Сүз	Arg	Ala	Phe	
Gln 65	Tyr	His	Ser	Lys	Glu 70	Gln	Gln	Суз	Val	Ile 75	Met	Ala	Glu	Asn	Arg 80	
ГЛЗ	Ser	Ser	Ile	Ile 85	Ile	Arg	Met	Arg	Asp 90	Val	Val	Leu	Phe	Glu 95	Lys	
ГЛЗ	Val	Tyr	Leu 100	Ser	Glu	Суз	ГЛЗ	Thr 105	Gly	Asn	Gly	Lys	Asn 110	Tyr	Arg	
Gly	Thr	Met 115	Ser	Lys	Thr	ГЛЗ	Asn 120	Gly	Ile	Thr	Сүз	Gln 125	Lys	Trp	Ser	
Ser	Thr 130	Ser	Pro	His	Arg	Pro 135	Arg	Phe	Ser	Pro	Ala 140	Thr	His	Pro	Ser	
Glu 145	Gly	Leu	Glu	Glu	Asn 150	Tyr	Сүз	Arg	Asn	Pro 155	Aab	Asn	Asp	Pro	Gln 160	
Gly	Pro	Trp	Cys	Tyr 165	Thr	Thr	Asp	Pro	Glu 170	Lys	Arg	Tyr	Asb	Tyr 175	Сув	
Asb	Ile	Leu	Glu 180	САа	Glu	Glu	Glu	Cys 185	Met	His	Сүз	Ser	Gly 190	Glu	Asn	
Tyr	Aab	Gly 195	Lys	Ile	Ser	Гла	Thr 200	Met	Ser	Gly	Leu	Glu 205	Сүз	Gln	Ala	
Trp	Asp 210	Ser	Gln	Ser	Pro	His 215	Ala	His	Gly	Tyr	Ile 220	Pro	Ser	Lys	Phe	
Pro 225	Asn	Lys	Asn	Leu	Lys 230	Lys	Asn	Tyr	Суз	Arg 235	Asn	Pro	Asp	Arg	Glu 240	
Leu	Arg	Pro	Trp	Cys 245	Phe	Thr	Thr	Asp	Pro 250	Asn	Гла	Arg	Trp	Glu 255	Leu	
Cys	Asp	Ile	Pro 260	Arg	Сув	Thr	Thr	Pro 265	Pro	Pro	Ser	Ser	Gly 270	Pro	Thr	
Tyr	Gln	Cys 275	Leu	Lys	Gly	Thr	Gly 280	Glu	Asn	Tyr	Arg	Gly 285	Asn	Val	Ala	
Val	Thr 290	Val	Ser	Gly	His	Thr 295	Суз	Gln	His	Trp	Ser 300	Ala	Gln	Thr	Pro	
His 305	Thr	His	Asn	Arg	Thr 310	Pro	Glu	Asn	Phe	Pro 315	Суз	Lys	Asn	Leu	Asp 320	
Glu	Asn	Tyr	Суз	Arg 325	Asn	Pro	Asp	Gly	Lys 330	Arg	Ala	Pro	Trp	Cys 335	His	

-continued

Thr	Thr	Asn	Ser 340	Gln	Val	Arg	Trp	Glu 345	Tyr	Сүз	Lys	Ile	Pro 350	Ser	Суз
Asp	Ser	Ser 355	Pro	Val	Ser	Thr	Glu 360	Gln	Leu	Ala	Pro	Thr 365	Ala	Pro	Pro
Glu	Leu 370	Thr	Pro	Val	Val	Gln 375	Asp	Сув	Tyr	His	Gly 380	Asp	Gly	Gln	Ser
Tyr 385	Arg	Gly	Thr	Ser	Ser 390	Thr	Thr	Thr	Thr	Gly 395	Lys	Lys	Суз	Gln	Ser 400
Trp	Ser	Ser	Met	Thr 405	Pro	His	Arg	His	Gln 410	Lys	Thr	Pro	Glu	Asn 415	Tyr
Pro	Asn	Ala	Gly 420	Leu	Thr	Met	Asn	Tyr 425	Сув	Arg	Asn	Pro	Asp 430	Ala	Asp
ГÀа	Gly	Pro 435	Trp	Сүз	Phe	Thr	Thr 440	Asp	Pro	Ser	Val	Arg 445	Trp	Glu	Tyr
СЛа	Asn 450	Leu	Lys	Lys	Сүз	Ser 455	Gly	Thr	Glu	Ala	Ser 460	Val	Val	Ala	Pro
Pro 465	Pro	Val	Val	Leu	Leu 470	Pro	Asp	Val	Glu	Thr 475	Pro	Ser	Glu	Glu	Asp 480
Cya	Met	Phe	Gly	Asn 485	Gly	Lys	Gly	Tyr	Arg 490	Gly	Lys	Arg	Ala	Thr 495	Thr
Val	Thr	Gly	Thr 500	Pro	Сүз	Gln	Asb	Trp 505	Ala	Ala	Gln	Glu	Pro 510	His	Arg
His	Ser	Ile 515	Phe	Thr	Pro	Glu	Thr 520	Asn	Pro	Arg	Ala	Gly 525	Leu	Glu	Lys
Asn	Tyr 530	CÀa	Arg	Asn	Pro	Asp 535	Gly	Aab	Val	Gly	Gly 540	Pro	Trp	Сүз	Tyr
Thr 545	Thr	Asn	Pro	Arg	Lys 550	Leu	Tyr	Asp	Tyr	Суз 555	Asp	Val	Pro	Gln	Cys 560
Ala	Ala	Pro	Ser	Phe 565	Asp	Суз	Gly	Lys	Pro 570	Gln	Val	Glu	Pro	Lys 575	Lys
Сүз	Pro	Gly	Arg 580	Val	Val	Gly	Gly	Cys 585	Val	Ala	His	Pro	His 590	Ser	Trp
Pro	Trp	Gln 595	Val	Ser	Leu	Arg	Thr 600	Arg	Phe	Gly	Met	His 605	Phe	Cys	Gly
Gly	Thr 610	Leu	Ile	Ser	Pro	Glu 615	Trp	Val	Leu	Thr	Ala 620	Ala	His	Сүз	Leu
Glu 625	Lys	Ser	Pro	Arg	Pro 630	Ser	Ser	Tyr	Lys	Val 635	Ile	Leu	Gly	Ala	His 640
Gln	Glu	Val	Asn	Leu 645	Glu	Pro	His	Val	Gln 650	Glu	Ile	Glu	Val	Ser 655	Arg
Leu	Phe	Leu	Glu 660	Pro	Thr	Arg	Lys	Asp 665	Ile	Ala	Leu	Leu	Lys 670	Leu	Ser
Ser	Pro	Ala 675	Val	Ile	Thr	Asp	Lys 680	Val	Ile	Pro	Ala	Cys 685	Leu	Pro	Ser
Pro	Asn 690	Tyr	Val	Val	Ala	Asp 695	Arg	Thr	Glu	Суз	Phe 700	Ile	Thr	Gly	Trp
Gly 705	Glu	Thr	Gln	Gly	Thr 710	Phe	Gly	Ala	Gly	Leu 715	Leu	Lys	Glu	Ala	Gln 720
Leu	Pro	Val	Ile	Glu 725	Asn	Гла	Val	Сув	Asn 730	Arg	Tyr	Glu	Phe	Leu 735	Asn
Gly	Arg	Val	Gln 740	Ser	Thr	Glu	Leu	Cys 745	Ala	Gly	His	Leu	Ala 750	Gly	Gly

-continued

Thr	Aab	Ser 755	Суз	Gln	Gly	Asp	Ser 760	Gly	Gly	Pro	Leu	Val 765	Суз	Phe	Glu		
ГЛа	Asp 770	Lys	Tyr	Ile	Leu	Gln 775	Gly	Val	Thr	Ser	Trp 780	Gly	Leu	Gly	Суз		
Ala 785	Arg	Pro	Asn	ГЛа	Pro 790	Gly	Val	Tyr	Val	Arg 795	Val	Ser	Arg	Phe	Val 800		
Thr	Trp	Ile	Glu	Gly 805	Val	Met	Arg	Asn	Asn 810								
<210 <211 <212 <213 <220 <221 <221 <222)> SE L> LE 2> TY 3> OF 3> FE L> NF 2> LC	Q II INGTH IPE: IGANI IATUR ME/H OCATI) NO H: 75 DNA ISM: RE: RE: KEY: ION:	3 50 Homo CDS (1)	5 sa <u>r</u>	piens 750)	3										
<400)> SH	QUEI	ICE :	3													
gcc Ala 1	cct Pro	tca Ser	ttt Phe	gat Asp 5	tgt Cys	ggg Gly	aag Lys	cct Pro	caa Gln 10	gtg Val	gag Glu	ccg Pro	aag Lys	aaa Lys 15	tgt Cys	48	
cct Pro	gga Gly	agg Arg	gtt Val 20	gtg Val	д1À ааа	д1у ддд	tgt Cys	gtg Val 25	gcc Ala	cac His	cca Pro	cat His	tcc Ser 30	tgg Trp	ccc Pro	96	
tgg Trp	caa Gln	gtc Val 35	agt Ser	ctt Leu	aga Arg	aca Thr	agg Arg 40	ttt Phe	gga Gly	atg Met	cac His	ttc Phe 45	tgt Cys	gga Gly	ggc Gly	144	
acc Thr	ttg Leu 50	ata Ile	tcc Ser	cca Pro	gag Glu	tgg Trp 55	gtg Val	ttg Leu	act Thr	gct Ala	gcc Ala 60	cac His	tgc Cys	ttg Leu	gag Glu	192	
aag Lys 65	tcc Ser	cca Pro	agg Arg	cct Pro	tca Ser 70	tcc Ser	tac Tyr	aag Lys	gtc Val	atc Ile 75	ctg Leu	ggt Gly	gca Ala	cac His	caa Gln 80	240	
gaa Glu	gtg Val	aat Asn	ctc Leu	gaa Glu 85	ccg Pro	cat His	gtt Val	cag Gln	gaa Glu 90	ata Ile	gaa Glu	gtg Val	tct Ser	agg Arg 95	ctg Leu	288	
ttc Phe	ttg Leu	gag Glu	ccc Pro 100	aca Thr	cga Arg	aaa Lys	gat Asp	att Ile 105	gcc Ala	ttg Leu	cta Leu	aag Lys	cta Leu 110	agc Ser	agt Ser	336	
cct Pro	gcc Ala	gtc Val 115	atc Ile	act Thr	gac Asp	aaa Lys	gta Val 120	atc Ile	cca Pro	gct Ala	tgt Cys	ctg Leu 125	cca Pro	tcc Ser	cca Pro	384	
aat Asn	tat Tyr 130	gtg Val	gtc Val	gct Ala	gac Asp	cgg Arg 135	acc Thr	gaa Glu	tgt Cys	ttc Phe	atc Ile 140	act Thr	ggc Gly	tgg Trp	gga Gly	432	
gaa Glu 145	acc Thr	caa Gln	ggt Gly	act Thr	ttt Phe 150	gga Gly	gct Ala	ggc Gly	ctt Leu	ctc Leu 155	aag Lys	gaa Glu	gcc Ala	cag Gln	ctc Leu 160	480	
cct Pro	gtg Val	att Ile	gag Glu	aat Asn 165	aaa Lys	gtg Val	tgc Cys	aat Asn	cgc Arg 170	tat Tyr	gag Glu	ttt Phe	ctg Leu	aat Asn 175	gga Gly	528	
aga Arg	gtc Val	caa Gln	tcc Ser 180	acc Thr	gaa Glu	ctc Leu	tgt Cys	gct Ala 185	glà aaa	cat His	ttg Leu	gcc Ala	gga Gly 190	ggc Gly	act Thr	576	
gac Asp	agt Ser	tgc Cys 195	cag Gln	ggt Gly	gac Asp	agt Ser	gga Gly 200	ggt Gly	cct Pro	ctg Leu	gtt Val	tgc Cys 205	ttc Phe	gag Glu	aag Lys	624	
gac Asp	aaa Lys 210	tac Tyr	att Ile	tta Leu	caa Gln	gga Gly 215	gtc Val	act Thr	tct Ser	tgg Trp	ggt Gly 220	ctt Leu	ggc Gly	tgt Cys	gca Ala	672	

30

-continued

cgc Arg 225	ccc Pro	aat Asn	aag Lys	cct Pro	ggt Gly 230	gtc Val	tat Tyr	gtt Val	cgt Arg	gtt Val 235	tca Ser	agg Arg	ttt Phe	gtt Val	act Thr 240	720
tgg Trp	att Ile	gag Glu	gga Gly	gtg Val 245	atg Met	aga Arg	aat Asn	aat Asn	taa *							750
<210 <211 <212 <213)> SE L> LE 2> TY 3> OF	Q ID INGTH IPE : RGANI) NO I: 24 PRT ISM:	4 19 Homo	sar	iens	3									
<400)> SE	QUEN	ICE :	4												
Ala 1	Pro	Ser	Phe	Asp 5	Сув	Gly	Lys	Pro	Gln 10	Val	Glu	Pro	Lys	Lys 15	Суз	
Pro	Gly	Arg	Val 20	Val	Gly	Gly	Сүз	Val 25	Ala	His	Pro	His	Ser 30	Trp	Pro	
Trp	Gln	Val 35	Ser	Leu	Arg	Thr	Arg 40	Phe	Gly	Met	His	Phe 45	Суз	Gly	Gly	
Thr	Leu 50	Ile	Ser	Pro	Glu	Trp 55	Val	Leu	Thr	Ala	Ala 60	His	Суз	Leu	Glu	
Lys 65	Ser	Pro	Arg	Pro	Ser 70	Ser	Tyr	Lys	Val	Ile 75	Leu	Gly	Ala	His	Gln 80	
Glu	Val	Asn	Leu	Glu 85	Pro	His	Val	Gln	Glu 90	Ile	Glu	Val	Ser	Arg 95	Leu	
Phe	Leu	Glu	Pro 100	Thr	Arg	Lys	Asp	Ile 105	Ala	Leu	Leu	Lys	Leu 110	Ser	Ser	
Pro	Ala	Val 115	Ile	Thr	Asp	Lys	Val 120	Ile	Pro	Ala	Cys	Leu 125	Pro	Ser	Pro	
Asn	Tyr 130	Val	Val	Ala	Asp	Arg 135	Thr	Glu	Cys	Phe	Ile 140	Thr	Gly	Trp	Gly	
Glu 145	Thr	Gln	Gly	Thr	Phe 150	Gly	Ala	Gly	Leu	Leu 155	Lys	Glu	Ala	Gln	Leu 160	
Pro	Val	Ile	Glu	Asn 165	ГЛа	Val	САа	Asn	Arg 170	Tyr	Glu	Phe	Leu	Asn 175	Gly	
Arg	Val	Gln	Ser 180	Thr	Glu	Leu	Суз	Ala 185	Gly	His	Leu	Ala	Gly 190	Gly	Thr	
Asp	Ser	Cys 195	Gln	Gly	Asp	Ser	Gly 200	Gly	Pro	Leu	Val	Cys 205	Phe	Glu	Lys	
Asp	Lys 210	Tyr	Ile	Leu	Gln	Gly 215	Val	Thr	Ser	Trp	Gly 220	Leu	Gly	Суз	Ala	
Arg 225	Pro	Asn	Lys	Pro	Gly 230	Val	Tyr	Val	Arg	Val 235	Ser	Arg	Phe	Val	Thr 240	
Trp	Ile	Glu	Gly	Val 245	Met	Arg	Asn	Asn								
<210 <211 <212 <213 <220)> SE L> LE 2> TY 3> OF)> FE	Q ID INGTH IPE : IGANI IATUR) NO I: 10 DNA ISM: 2E:	5)47 Homo	> sar	biens	3									
<221 <222	L> NA 2> LC	ME/K CATI	EY : ON :	CDS (1)	(1	L047)										
<400)> SE	QUEN	ICE :	5												
gca Ala 1	cct Pro	ccg Pro	cct Pro	gtt Val 5	gtc Val	ctg Leu	ctt Leu	cca Pro	gat Asp 10	gta Val	gag Glu	act Thr	cct Pro	tcc Ser 15	gaa Glu	48

32

-continued

gaa Glu	gac Asp	tgt Cys	atg Met 20	ttt Phe	glà dâð	aat Asn	glà aaa	aaa Lys 25	gga Gly	tac Tyr	cga Arg	ggc Gly	aag Lys 30	agg Arg	gcg Ala	96
acc Thr	act Thr	gtt Val 35	act Thr	с1 ^у ааа	acg Thr	cca Pro	tgc Cys 40	cag Gln	gac Asp	tgg Trp	gct Ala	gcc Ala 45	cag Gln	gag Glu	ccc Pro	144
cat His	aga Arg 50	cac His	agc Ser	att Ile	ttc Phe	act Thr 55	cca Pro	gag Glu	aca Thr	aat Asn	cca Pro 60	cgg Arg	gcg Ala	ggt Gly	ctg Leu	192
gaa Glu 65	aaa Lys	aat Asn	tac Tyr	tgc Cys	cgt Arg 70	aac Asn	cct Pro	gat Asp	ggt Gly	gat Asp 75	gta Val	ggt Gly	ggt Gly	ccc Pro	tgg Trp 80	240
tgc Cys	tac Tyr	acg Thr	aca Thr	aat Asn 85	cca Pro	aga Arg	aaa Lys	ctt Leu	tac Tyr 90	gac Asp	tac Tyr	tgt Cys	gat Asp	gtc Val 95	cct Pro	288
cag Gln	tgt Cys	gcg Ala	gcc Ala 100	cct Pro	tca Ser	ttt Phe	gat Asp	tgt Cys 105	д1 ^у ааа	aag Lys	cct Pro	caa Gln	gtg Val 110	gag Glu	ccg Pro	336
aag Lys	aaa Lys	tgt Cys 115	cct Pro	gga Gly	agg Arg	gtt Val	gtg Val 120	д1У ддд	д1Х ддд	tgt Cys	gtg Val	gcc Ala 125	cac His	cca Pro	cat His	384
tcc Ser	tgg Trp 130	ccc Pro	tgg Trp	caa Gln	gtc Val	agt Ser 135	ctt Leu	aga Arg	aca Thr	agg Arg	ttt Phe 140	gga Gly	atg Met	cac His	ttc Phe	432
tgt Cys 145	gga Gly	ggc Gly	acc Thr	ttg Leu	ata Ile 150	tcc Ser	cca Pro	gag Glu	tgg Trp	gtg Val 155	ttg Leu	act Thr	gct Ala	gcc Ala	cac His 160	480
tgc Cys	ttg Leu	gag Glu	aag Lys	tcc Ser 165	cca Pro	agg Arg	cct Pro	tca Ser	tcc Ser 170	tac Tyr	aag Lys	gtc Val	atc Ile	ctg Leu 175	ggt Gly	528
gca Ala	cac His	caa Gln	gaa Glu 180	gtg Val	aat Asn	ctc Leu	gaa Glu	ccg Pro 185	cat His	gtt Val	cag Gln	gaa Glu	ata Ile 190	gaa Glu	gtg Val	576
tct Ser	agg Arg	ctg Leu 195	ttc Phe	ttg Leu	gag Glu	ccc Pro	aca Thr 200	cga Arg	aaa Lys	gat Asp	att Ile	gcc Ala 205	ttg Leu	cta Leu	aag Lys	624
cta Leu	agc Ser 210	agt Ser	cct Pro	gcc Ala	gtc Val	atc Ile 215	act Thr	gac Asp	aaa Lys	gta Val	atc Ile 220	cca Pro	gct Ala	tgt Cys	ctg Leu	672
cca Pro 225	tcc Ser	cca Pro	aat Asn	tat Tyr	gtg Val 230	gtc Val	gct Ala	gac Asp	cgg Arg	acc Thr 235	gaa Glu	tgt Cys	ttc Phe	atc Ile	act Thr 240	720
ggc Gly	tgg Trp	gga Gly	gaa Glu	acc Thr 245	caa Gln	ggt Gly	act Thr	ttt Phe	gga Gly 250	gct Ala	ggc Gly	ctt Leu	ctc Leu	aag Lys 255	gaa Glu	768
gcc Ala	cag Gln	ctc Leu	cct Pro 260	gtg Val	att Ile	gag Glu	aat Asn	aaa Lys 265	gtg Val	tgc Cys	aat Asn	cgc Arg	tat Tyr 270	gag Glu	ttt Phe	816
ctg Leu	aat Asn	gga Gly 275	aga Arg	gtc Val	caa Gln	tcc Ser	acc Thr 280	gaa Glu	ctc Leu	tgt Cys	gct Ala	999 Gly 285	cat His	ttg Leu	gcc Ala	864
gga Gly	ggc Gly 290	act Thr	gac Asp	agt Ser	tgc Cys	cag Gln 295	ggt Gly	gac Asp	agt Ser	gga Gly	ggt Gly 300	cct Pro	ctg Leu	gtt Val	tgc Cys	912
ttc Phe 305	gag Glu	aag Lys	gac Asp	aaa Lys	tac Tyr 310	att Ile	tta Leu	caa Gln	gga Gly	gtc Val 315	act Thr	tct Ser	tgg Trp	ggt Gly	ctt Leu 320	960
ggc Gly	tgt Cys	gca Ala	cgc Arg	ccc Pro 325	aat Asn	aag Lys	cct Pro	ggt Gly	gtc Val 330	tat Tyr	gtt Val	cgt Arg	gtt Val	tca Ser 335	agg Arg	1008

-continued

36

ttt gtt act tgg at	: gag gga gtg a	g aga aat aat taa	1047
Phe Val Thr Trp Il	e Glu Gly Val M	t Arg Asn Asn *	
340	3	5	
<210> SEQ ID NO 6 <211> LENGTH: 348 <212> TYPE: PRT <213> ORGANISM: How	no sapiens		
<400> SEQUENCE: 6			
Ala Pro Pro Pro Va	l Val Leu Leu P	o Asp Val Glu Thr Pro	Ser Glu
1 5		10	15
Glu Asp Cys Met Ph	e Gly Asn Gly L	s Gly Tyr Arg Gly Lys	Arg Ala
20	2	30	
Thr Thr Val Thr Gl	7 Thr Pro Cys G	n Asp Trp Ala Ala Gln	Glu Pro
35	40	45	
His Arg His Ser Il	e Phe Thr Pro G	u Thr Asn Pro Arg Ala	Gly Leu
50	55	60	
Glu Lys Asn Tyr Cy	s Arg Asn Pro A	p Gly Asp Val Gly Gly	Pro Trp
65	70	75	80
Cys Tyr Thr Thr As	n Pro Arg Lys L	eu Tyr Asp Tyr Cys Asp	Val Pro
85		90	95
Gln Cys Ala Ala Pr	o Ser Phe Asp C	rs Gly Lys Pro Gln Val	Glu Pro
100	1	95 110	
Lya Lya Cya Pro Gl	/ Arg Val Val G	y Gly Cys Val Ala His.	Pro His
115	120	125	
Ser Trp Pro Trp Gl	n Val Ser Leu A	ng Thr Arg Phe Gly Met	His Phe
130	135	140	
Cys Gly Gly Thr Le	1 Ile Ser Pro G	u Trp Val Leu Thr Ala.	Ala His
145	150	155	160
Cys Leu Glu Lys Se	r Pro Arg Pro S	er Ser Tyr Lys Val Ile	Leu Gly
16	5	170	175
Ala His Gln Glu Va	l Asn Leu Glu F	o His Val Gln Glu Ile	Glu Val
180	1	5 190	
Ser Arg Leu Phe Le	1 Glu Pro Thr A	g Lys Asp Ile Ala Leu	Leu Lys
195	200	205	
Leu Ser Ser Pro Al	a Val Ile Thr A	p Lys Val Ile Pro Ala	Cys Leu
210	215	220	
Pro Ser Pro Asn Ty	r Val Val Ala A	p Arg Thr Glu Cys Phe	Ile Thr
225	230	235	240
Gly Trp Gly Glu Th	Gln Gly Thr P	ne Gly Ala Gly Leu Leu	Lys Glu
24		250	255
Ala Gln Leu Pro Va	l Ile Glu Asn L	rs Val Cys Asn Arg Tyr	Glu Phe
260	2	5 270	
Leu Asn Gly Arg Va	l Gln Ser Thr G	u Leu Cys Ala Gly His	Leu Ala
275	280	285	
Gly Gly Thr Asp Se	r Cys Gln Gly A	sp Ser Gly Gly Pro Leu	Val Cys
290	295	300	
Phe Glu Lys Asp Ly	s Tyr Ile Leu G	n Gly Val Thr Ser Trp.	Gly Leu
305	310	315	320
Gly Cys Ala Arg Pro	o Asn Lys Pro G	y Val Tyr Val Arg Val	Ser Arg
Phe Val Thr Trp Il	َ Glu Gly Val M	et Arg Asn Asn	

- 38

-continued	
<210> SEQ ID NO 7	
<211> LENGTH: 38	
<212> IIPE: DWA	
<2205 FEATURE.	
<221> NAME/KEY: misc feature	
<pre><222> LOCATION: (1)(38)</pre>	
<400> SEQUENCE: 7	
ggggtatete tegagaaaag ageeeettea tttgattg	38
<210> SEO ID NO 8	
<211> LENGTH: 38	
<212> TYPE: DNA	
<213> ORGANISM: Homo sapiens	
<220> FEATURE:	
<221> NAME/KEY: misc_feature	
<222> LOCATION: (1)(38)	
<223> OTHER INFORMATION: reverse primer human microplasminogen	
<400> SEQUENCE: 8	
gtttttgttc tagattaatt atttctcatc actccctc	38
<210> SEQ ID NO 9	
<211> LENGTH: 47	
<212> TYPE: DNA	
<213> ORGANISM: Homo sapiens	
<220> FEATURE:	
<221> NAME/KEY: misc_feature	
<222> LOCATION: (1)(47)	
2223> OTHER INFORMATION: TOward primer numan minipiasminogen	
<400> SEQUENCE: 9	
ggggtatete tegagaaaag ageaceteeg eetgttgtee tgettee	47
<210> SEO ID NO 10	
<211> LENGTH: 27	
<212> TYPE: DNA	
<213> ORGANISM: Homo sapiens	
<220> FEATURE:	
<221> NAME/KEY: misc_feature	
<222> LOCATION: (1)(27)	
<223> OINER INFORMATION: reverse primer numan minipiasminogen	
<400> SEQUENCE: 10	
gcagtgggct gcagtcaaca cccactc	27

65

The invention claimed is:

1. A yeast cell expressing microplasminogen encoded by a $_{50}$ mammalian nucleotide sequence, wherein the amino acid sequence of said microplasminogen consists of the amino acid sequence of SEQ ID NO: 4.

2. The yeast cell according to claim **1**, wherein said mammalian nucleotide sequence is the nucleotide sequence of 55 SEQ ID NO: 3.

3. The yeast cell according to claim **1**, wherein said mammalian nucleotide sequence is under the control of an inducible promoter.

4. The yeast cell according to claim **1**, said yeast cell belonging to the group of the methylotrophic yeasts.

5. The yeast cell according to claim **4**, wherein said yeast is selected from the group consisting of the *Hansenula*, *Pichia*, *Candida* and *Torulopsis genera*.

6. The yeast cell according to claim 4, belonging to the *Pichia pastoris* species.

7. The yeast cell according to claim 1, wherein said mammalian nucleotide sequence is integrated into the genome of said yeast cell.

8. The yeast cell according to claim **1**, wherein said yeast cell is the deposited cell line with accession number MUCL43676.

9. The yeast cell according to claim 1, expressing said microplasminogen at a level of at least about 100 mg/litre.

10. The yeast cell according to claim **1**, wherein said mammalian nucleotide sequence is fused to a nucleotide sequence encoding a secretion signal.

11. A yeast cell expressing microplasminogen, wherein the amino acid sequence of said microplasminogen consists of the amino acid sequence of SEQ ID NO: 4.

12. A method of producing activated microplasmin, said method comprising the steps of:

(a) providing a yeast cell that is transformed with a nucleotide sequence encoding a microplasminogen amino acid sequence consisting of the amino acid sequence of SEQ ID NO: 4;

10

- (b) culturing said yeast cell under conditions such that a microplasminogen consisting of said amino acid sequence is expressed; and
- (c) activating said microplasminogen by means of a plasminogen activator.

13. The method according to claim **12**, wherein said plasminogen activator is staphylokinase.

14. The method according to claim 12, further comprising the step of stabilizing the expressed and activated microplasmin by means of a stabilizing agent or medium.

15. The method according to claim **14**, wherein said stabilizing agent comprises an amino-acid selected from the group consisting of lysine, 6-amino hexanoic acid and tranexamic acid.

16. The method according to claim **14**, wherein said stabi- 15 lizing medium is an acid solution or an acid buffer.

17. The method according to claim **16**, wherein said stabilizing medium is a citrate buffer with a pH of about 3.1.

18. The method according to claim **14**, further comprising the step of drying the expressed, activated and stabilized 20 microplasmin.

19. A recombinant mammalian protein obtained by the method according to claim 12.

20. The method according to claim **12**, wherein said yeast cell is transformed with the nucleotide sequence of SEQ ID 25 NO: 3 and a high expression *Pichia* strain of microplasminogen is selected.

21. The method according to claim **12**, which optionally comprises the step of purifying said expressed microplasminogen obtained in step (b) by one or more purification meth- 30 ods.

22. The method according to claim **12** wherein said yeast cell is the deposited strain with accession number MUCL43676.

23. The method according to claim **12**, wherein said microplasminogen is expressed at a level of about 100 mg/litre.

24. An isolated nucleotide sequence encoding a fusion protein of microplasminogen and a secretion signal sequence, wherein the amino acid sequence of said microplasminogen consists of the amino acid sequence of SEQ ID NO: 4.

25. The isolated nucleotide sequence of claim **24**, said nucleotide sequence comprising the nucleotide sequence of SEQ ID NO: **3**.

26. An isolated cell containing the nucleic acid molecule of claim 24.

27. An isolated vector containing the nucleic acid molecule of claim 24.

28. An isolated cell containing the vector of claim 27.

29. A purified microplasminogen, wherein the amino acid sequence of said microplasminogen consists of the amino acid sequence of SEQ ID NO: 4.

30. An isolated cell producing the microplasminogen of claim **29**.

31. A pharmaceutical composition comprising microplasminogen, wherein the amino acid sequence of said microplasminogen consists of the amino acid sequence of SEQ ID NO: 4.

32. The pharmaceutical composition of claim **31**, further comprising a pharmaceutically-acceptable carrier.

* * * *

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

 PATENT NO.
 : 7,445,775 B2

 APPLICATION NO.
 : 10/450976

 DATED
 : November 4, 2008

 INVENTOR(S)
 : Collen et al.

Page 1 of 1

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the title page,

[*] Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 USC 154(b) by (386) days

Delete the phrase "by 386 days" and insert -- by 556 days --

Signed and Sealed this

Twenty-second Day of December, 2009

David J. Kgppos

David J. Kappos Director of the United States Patent and Trademark Office

UNITED STATES PATENT AND TRADEMARK OFFICE CERTIFICATE OF CORRECTION

 PATENT NO.
 : 7,445,775 B2

 APPLICATION NO.
 : 10/450976

 DATED
 : November 4, 2008

 INVENTOR(S)
 : Collen et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

On the Title Page:

The first or sole Notice should read --

Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 1045 days.

On the title page, item [56]: Under "References Cited," Under "OTHER PUBLICATIONS," insert --English translation of Office Action as issued by Japan Patent Office dated April 30, 2008 in Patent Application No. 067213/2007.--.

Column 2, Line 42, replace "factor XII." with --factor XIII.--.

Column 7,

Line 1, delete "Insert the enclosed sequence listing at the end of the specification."Line 18, replace "th genome." with --the genome.--.Line 56, replace "m thod" with --method--.

Column 9,

Line 31, replace "a factor" with $-\alpha$ factor--. Line 32, replace "wel" with --well--.

Column 11,

Line 17, replace "2 I" with --2 l--. Line 23, replace "30 I" with --30 l--. Line 26, replace "mill" with --ml/l--.

Column 12,

Line 7, replace "pack d" with --packed--. Line 53, replace "Boumonville" with --Bournonville--.

Signed and Sealed this

Thirtieth Day of November, 2010

Jand J. Kgpos

David J. Kappos Director of the United States Patent and Trademark Office

Page 1 of 26

Column 13, Line 19, replace "summariz d" with --summarized--. Line 56, replace "d fined" with --defined--.
Column 14, Line 31, replace "left ar" with --left ear--. Line 34, replace "ov r" with --over--.
Column 15, Line 13, replace "%-antiplasmin" with --α₂-antiplasmin--.
Column 16, Line 43, replace "ct-antiplasmin" with --α₂-antiplasmin--. Line 59, replace "r duction" with --reduction--.
Column 17, In TABLE 3, under Column "Residual α₂-antiplasmin (percent)*," in bottom row, delete value "120". In TABLE 3, under Column "Bleeding time (sec)*," in bottom row, insert value --120--.

Line 29, replace "prem dication" with --premedication--.

Column 20, Line 5, replace "1.5 m/kg" with --1.5 mg/kg--.

Please replace the Sequence Listing in the above-referenced patent, from column 19 to column 38, with the Sequence Listing provided below.

SEQUENCE LISTING

<110>	Collen, Desire Jose Nagai, Nubuo Laroche, Yves
<120>	Yeast Expression Vector and a Method of Making a Recombinant Protein by Expression in a Yeast Cell
<130>	50304/005001
<140>	US 10/450,976
<141>	2003-12-08
<150>	PCT/BE01/00217
<151>	2001-12-20
<150>	GB 0116702
<151>	2001-07-09
<150>	GB 0116690
<151>	2001-07-09
<150>	GB 0031196
<151>	2000-12-21
<160>	15
<170>	PatentIn version 3.3
<210>	1
<211>	2433

<212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(2433) <400> 1 atg gaa cat aag gaa gtg gtt ctt cta ctt ctt tta ttt ctg aaa tca 48 Met Glu His Lys Glu Val Val Leu Leu Leu Leu Leu Phe Leu Lys Ser 5 10 15 1 ggt caa gga gag cct ctg gat gac tat gtg aat acc cag ggg gct tca 96 Gly Gln Gly Glu Pro Leu Asp Asp Tyr Val Asn Thr Gln Gly Ala Ser 25 30 20 144 ctg ttc agt gtc act aag aag cag ctg gga gca gga agt ata gaa gaa Leu Phe Ser Val Thr Lys Lys Gln Leu Gly Ala Gly Ser Ile Glu Glu 35 40 tgt gca gca aaa tgt gag gag gac gaa gaa ttc acc tgc agg gca ttc 192 Cys Ala Ala Lys Cys Glu Glu Asp Glu Glu Phe Thr Cys Arg Ala Phe 50 55 60 caa tat cac agt aaa gag caa caa tgt gtg ata atg gct gaa aac agg 240 Gln Tyr His Ser Lys Glu Gln Gln Cys Val Ile Met Ala Glu Asn Arg 65 70 75 80 aag tee tee ata ate att agg atg aga gat gta gtt tta ttt gaa aag 288 Lys Ser Ser Ile Ile Ile Arg Met Arg Asp Val Val Leu Phe Glu Lys 90 85 95 aaa gtg tat ctc tca gag tgc aag act ggg aat gga aag aac tac aga 336 Lys Val Tyr Leu Ser Glu Cys Lys Thr Gly Asn Gly Lys Asn Tyr Arg 100 105 110

д1 <i></i> даа	acg Thr	atg Met 115	tcc Ser	aaa Lys	aca Thr	aaa Lys	aat Asn 120	ggc Gly	atc Ile	acc Thr	tgt Cys	caa Gln 125	aaa Lys	tgg Trp	agt Ser	384
tcc Ser	act Thr 130	tct Ser	ccc Pro	cac His	aga Arg	cct Pro 135	aga Arg	ttc Phe	tca Ser	cct Pro	gct Ala 140	aca Thr	cac His	ccc Pro	tca Ser	432
gag Glu 145	gga Gly	ctg Leu	gag Glu	gag Glu	aac Asn 150	tac Tyr	tgc Cys	agg Arg	aat Asn	cca Pro 155	gac Asp	aac Asn	gat Asp	ccg Pro	cag Gln 160	480
9 9 9 Gly	ccc Pro	tgg Trp	tgc Cys	tat Tyr 165	act Thr	act Thr	gat Asp	cca Pro	gaa Glu 170	aag Lys	aga Arg	tat Tyr	gac Asp	tac Tyr 175	tgc Cys	528
gac Asp	att Ile	ctt Leu	gag Glu 180	tgt Cys	gaa Glu	gag Glu	gaa Glu	tgt Cys 185	atg Met	cat His	tgc Cy s	agt Ser	gga Gly 190	gaa Glu	aac Asn	576
tat Tyr	gac Asp	ggc Gly 195	aaa Lys	att Ile	tcc Ser	aag Lys	acc Thr 200	atg Met	tct Ser	gga Gly	ctg Leu	gaa Glu 205	tgc Cys	cag Gln	gcc Ala	624
tgg Trp	gac Asp 210	tct Ser	cag Gln	agc Ser	cca Pro	cac His 215	gct Ala	cat His	gga Gly	tac Tyr	att Ile 220	cct Pro	tcc Ser	aaa Lys	ttt Phe	672
cca Pro 225	aac Asn	aag Lys	aac Asn	ctg Leu	aag Lys 230	aag Lys	aat Asn	tac Tyr	tgt Cys	cgt Arg 235	aac Asn	ccc Pro	gat Asp	agg Arg	gag Glu 240	720
ctg Leu	cgg Arg	cct Pro	tgg Trp	tgt Cys 245	ttc Phe	acc Thr	acc Thr	gac Asp	ccc Pro 250	aac Asn	aag Lys	cgc Arg	tgg Trp	gaa Glu 255	ctt Leu	768

tgc Cys	gac Asp	atc Ile	ccc Pro 260	cgc Arg	tgc Cys	aca Thr	aca Thr	cct Pro 265	cca Pro	cca Pro	tct Ser	tct Ser	ggt Gly 270	ccc Pro	acc Thr	816
tac Tyr	cag Gln	tgt Cys 275	ctg Leu	aag Lys	gga Gly	aca Thr	ggt Gly 280	gaa Glu	aac Asn	tat Tyr	cgc Arg	999 Gly 285	aat Asn	gtg Val	gct Ala	864
gtt Val	acc Thr 290	gtt Val	tcc Ser	ддд G1У	cac His	acc Thr 295	tgt Cys	cag Gln	cac His	tgg Trp	agt Ser 300	gca Ala	cag Gln	acc Thr	cct Pro	912
cac His 305	aca Thr	cat His	aac Asn	agg Arg	aca Thr 310	cca Pro	gaa Glu	aac Asn	ttc Phe	ccc Pro 315	tgc Cys	aaa Lys	aat Asn	ttg Leu	gat Asp 320	960
gaa Glu	aac Asn	tac Tyr	tgc Cys	cgc Arg 325	aat Asn	cct Pro	gac Asp	gga Gly	aaa Lys 330	agg Arg	gcc Ala	cca Pro	tgg Trp	tgc Cys 335	cat His	1008
aca Thr	acc Thr	aac Asn	agc Ser 340	caa Gln	gtg Val	cgg Arg	tgg Trp	gag Glu 345	tac Tyr	tgt Cys	aag Lys	ata Ile	ccg Pro 350	tcc Ser	tgt Cys	1056
gac Asp	tcc Ser	tcc Ser 355	cca Pro	gta Val	tcc Ser	acg Thr	gaa Glu 360	caa Gln	ttg Leu	gct Ala	ccc Pro	aca Thr 365	gca Ala	cca Pro	cct Pro	1104
gag Glu	cta Leu 370	acc Thr	cct Pro	gtg Val	gtc Val	cag Gln 375	gac Asp	tgc Cys	tac Tyr	cat His	ggt Gly 380	gat Asp	gga Gly	cag Gln	agc Ser	1152
tac Tyr 385	cga Arg	ggc Gly	aca Thr	tcc Ser	tcc Ser 390	acc Thr	acc Thr	acc Thr	aca Thr	gga Gly 395	aag Lys	aag Lys	tgt Cys	cag Gln	tct Ser 400	1200

tgg Trp	tca Ser	tct Ser	atg Met	aca Thr 405	cca Pro	cac His	cgg Arg	cac His	cag Gln 410	aag Lys	acc Thr	cca Pro	gaa Glu	aac Asn 415	tac Tyr	1	.248
cca Pro	aat Asn	gct Al a	ggc Gly 420	ctg Leu	aca Thr	atg Met	aac Asn	tac Tyr 425	tgc Cys	agg Arg	aat Asn	cca Pro	gat Asp 430	gcc Ala	gat Asp	1	296
aaa Lys	ggc Gly	ccc Pro 435	tgg Trp	tgt Cys	ttt Phe	acc Thr	aca Thr 440	gac Asp	ccc Pro	agc Ser	gtc Val	agg Arg 445	tgg Trp	gag Glu	tac Tyr	1	.344
tgc Cys	aac Asn 450	ctg Leu	aaa Lys	aaa Lys	tgc Cys	tca Ser 455	gga Gly	aca Thr	gaa Glu	gcg Ala	agt Ser 460	gtt Val	gta Val	gca Ala	cct Pro	1	.392
ccg Pro 465	cct Pro	gtt Val	gtc Val	ctg Leu	ctt Leu 470	cca Pro	gat Asp	gta Val	gag Glu	act Thr 475	cct Pro	tcc Ser	gaa Glu	gaa Glu	gac Asp 480	1	440
tgt Cys	atg Met	ttt Phe	elà aaa	aat Asn 485	G1À 333	aaa Lys	gga Gly	tac Tyr	cga Arg 490	ggc Gly	aag Lys	agg Arg	gcg Ala	acc Thr 495	act Thr	1	488
gtt Val	act Thr	ggg Gly	acg Thr 500	cca Pro	tgc Cys	cag Gln	gac Asp	tgg Trp 505	gct Ala	gcc Ala	cag Gln	gag Glu	ccc Pro 510	cat His	aga Arg	1	.536
cac His	agc Ser	att Ile 515	ttc Phe	act Thr	cca Pro	gag Glu	aca Thr 520	aat Asn	cca Pro	cgg Arg	gcg Ala	ggt Gly 525	ctg Leu	gaa Glu	aaa Lys	1	584
aat Asn	tac Tyr 530	tgc Cys	cgt Arg	aac Asn	cct Pro	gat Asp 535	ggt Gly	gat Asp	gta Val	ggt Gly	ggt Gly 540	ccc Pro	tgg Trp	tgc Cys	tac Tyr	1	.632

acg Thr 545	aca Thr	aat Asn	cca Pro	aga Arg	aaa Lys 550	ctt Leu	tac Tyr	gac Asp	tac Tyr	tgt Cys 555	gat Asp	gtc Val	cct Pro	cag Gln	tgt Cys 560	1680
gcg Ala	gcc Ala	cct Pro	tca Ser	ttt Phe 565	gat Asp	tgt Cys	ggg Gly	aag Lys	cct Pro 570	caa Gln	gtg Val	gag Glu	ccg Pro	aag Lys 575	aaa Lys	1728
tgt Cys	cct Pro	gga Gly	agg Arg 580	gtt Val	gtg Val	G1À 888	GJA Baa	tgt Cys 585	gtg Val	gcc Ala	cac His	cca Pro	cat His 590	tcc Ser	tgg Trp	1776
ccc Pro	tgg Trp	caa Gln 595	gtc Val	agt Ser	ctt Leu	aga Arg	aca Thr 600	agg Arg	ttt Phe	gga Gly	atg Met	cac His 605	ttc Phe	tgt Cys	gga Gly	1824
ggc Gly	acc Thr 610	ttg Leu	ata Ile	tcc Ser	cca Pro	gag Glu 615	tgg Trp	gtg Val	ttg Leu	act Thr	gct Ala 620	gcc Ala	cac His	tgc Cys	ttg Leu	1872
gag Glu 625	aag Lys	tcc Ser	cca Pro	agg Arg	cct Pro 630	tca Ser	tcc Ser	tac Tyr	aag Lys	gtc Val 635	atc Ile	ctg Leu	ggt Gly	gca Ala	cac His 640	1920
caa Gln	gaa Glu	gtg Val	aat Asn	ctc Leu 645	gaa Glu	ccg Pro	cat His	gtt Val	cag Gln 650	gaa Glu	ata Ile	gaa Glu	gtg Val	tct Ser 655	agg Arg	1968
ctg Leu	ttc Phe	ttg Leu	gag Glu 660	ccc Pro	aca Thr	cga Arg	aaa Lys	gat Asp 665	att Ile	gcc Ala	ttg Leu	cta Leu	aag Lys 670	cta Leu	agc Ser	2016
agt Ser	cct Pro	gcc Ala 675	gtc Val	atc Ile	act Thr	gac Asp	aaa Lys 680	gta Val	atc Ile	cca Pro	gct Ala	tgt Cys 685	ctg Leu	cca Pro	tcc Ser	2064

cca Pro	aat Asn 690	tat Tyr	gtg Val	gtc Val	gct Ala	gac Asp 695	cgg Arg	acc Thr	gaa Glu	tgt Cys	ttc Phe 700	atc Ile	act Thr	ggc Gly	tgg Trp	2112
gga Gly 705	gaa Glu	acc Thr	caa Gln	ggt Gly	act Thr 710	ttt Phe	gga Gly	gct Ala	ggc Gly	ctt Leu 715	ctc Leu	aag Lys	gaa Glu	gcc Ala	cag Gln 720	2160
ctc Leu	cct Pro	gtg Val	att Ile	gag Glu 725	aat Asn	aaa Lys	gtg Val	tgc Cys	aat Asn 730	cgc Arg	tat Tyr	gag Glu	ttt Phe	ctg Leu 735	aat Asn	2208
gga Gly	aga Arg	gtc Val	caa Gln 740	tcc Ser	acc Thr	gaa Glu	ctc Leu	tgt Cys 745	gct Ala	д1У ддд	cat His	ttg Leu	gcc Ala 750	gga Gly	ggc Gly	2256
act Thr	gac Asp	agt Ser 755	tgc Cys	cag Gln	ggt Gly	gac Asp	agt Ser 760	gga Gly	ggt Gly	cct Pro	ctg Leu	gtt Val 765	tgc Cys	ttc Phe	gag Glu	2304
aag Lys	gac Asp 770	aaa Lys	tac Tyr	att Ile	tta Leu	caa Gln 775	gga Gly	gtc Val	act Thr	tct Ser	tgg Trp 780	ggt Gly	ctt Leu	ggc Gly	tgt Cys	2352
gca Ala 785	cgc Arg	ccc Pro	aat Asn	aag Lys	cct Pro 790	ggt Gly	gtc Val	tat Tyr	gtt Val	cgt Arg 795	gtt Val	tca Ser	agg Arg	ttt Phe	gtt Val 800	2400
act Thr	tgg Trp	att Ile	gag Glu	gga Gly 805	gtg Val	atg Met	aga Arg	aat Asn	aat Asn 810	taa						2433

<210> 2 <211> 810 <212> PRT <213> Homo sapiens

<400> 2							
Met Glu Hi 1	s Lys Glu 5	Val Val	Leu Leu	Leu Leu 10	Leu Phe	Leu Lys 15	Ser
Gly Gln G]	y Glu Pro 20	Leu Asp	Asp Tyr 25	Val Asn	Thr Gln	Gly Ala 30	Ser
Leu Phe Se 35	r Val Thr	Lys Lys	Gln Leu 40	Gly Ala	Gly Ser 45	Ile Glu	Glu
Cys Ala Al 50	а Lys Cys	Glu Glu 55	Asp Glu	Glu Phe	Thr Cys 60	Arg Ala	Phe
Gln Tyr Hi 65	s Ser Lys	Glu Gln 70	Gln Cys	Val Ile 75	Met Ala	Glu Asn	Arg 80
Lys Ser Se	r Ile Ile 85	Ile Arg	Met Arg	Asp Val 90	Val Leu	Phe Glu 95	Lys
Lys Val Ty	r Leu Ser 100	Glu Cys	Lys Thr 105	Gly Asn	Gly Lys	Asn Tyr 110	Arg
Gly Thr Me 11	t Ser Lys 5	Thr Lys	Asn Gly 120	Ile Thr	Cys Gln 125	Lys Trp	Ser
Ser Thr Se 130	r Pro His	Arg Pro 135	Arg Phe	Ser Pro	Ala Thr 140	His Pro	Ser

Glu 145	Gly	Leu	Glu	Glu	Asn 150	Tyr	Суз	Arg	Asn	Pro 155	Asp	Asn	Asp	Pro	Gln 160	
Gly	Pro	Trp	Cys	Tyr 165	Thr	Thr	Asp	Pro	Glu 170	Lys	Arg	Tyr	Азр	Tyr 175	Суз	
Asp	Ile	Leu	Glu 180	Cys	Glu	Glu	Glu	Сув 185	Met	His	Сув	Ser	Gly 190	Glu	Asn	
Tyr	Asp	Gly 195	Lys	Ile	Ser	Lys	Thr 200	Met	Ser	Gly	Leu	Glu 205	Cys	Gln	Ala	
Trp	Asp 210	Ser	Gln	Ser	Pro	His 215	Ala	His	Gly	Tyr	Ile 220	Pro	Ser	Lys	Phe	
Pro 225	Asn	Lys	Asn	Leu	Lys 230	Lys	Asn	Tyr	Сув	Arg 235	Asn	Pro	Asp	Arg	Glu 240	
Leu	Arg	Pro	Trp	Cys 245	Phe	Thr	Thr	Asp	Pro 250	Asn	Lys	Arg	Trp	Glu 255	Leu	
Cys	Asp	Ile	Pro 260	Arg	Cys	Thr	Thr	Pro 265	Pro	Pro	Ser	Ser	Gly 270	Pro	Thr	
Tyr	Gln	Cys 275	Leu	Lys	Gly	Thr	Gly 280	Glu	Asn	Tyr	Arg	Gly 285	Asn	Val	Ala	
Val	Thr 290	Val	Ser	Gly	His	Thr 295	Cys	Gln	His	Trp	Ser 300	Ala	Gln	Thr	Pro	

His 305	Thr	His	Asn	Arg	Thr 310	Pro	Glu	Asn	Phe	Pro 315	Cys	Lys	Asn	Leu	Asp 320
Glu	Asn	Tyr	Cys	Arg 325	Asn	Pro	Asp	Gly	Lys 330	Arg	Ala	Pro	Trp	Cys 335	His
Thr	Thr	Asn	Ser 340	Gln	Val	Arg	Trp	Glu 345	Tyr	Cys	Lys	Ile	Pro 350	Ser	Cys
Asp	Ser	Ser 355	Pro	Val	Ser	Thr	Glu 360	Gln	Leu	Ala	Pro	Thr 365	Ala	Pro	Pro
Glu	Leu 370	Thr	Pro	Val	Val	Gln 375	Asp	Cys	Tyr	His	Gly 380	Asp	Gly	Gln	Ser
Tyr 385	Arg	Glγ	Thr	Ser	Ser 390	Thr	Thr	Thr	Thr	Gly 395	Lys	Lys	Суз	Gln	Ser 400
Trp	Ser	Ser	Met	Thr 405	Pro	His	Arg	His	Gln 410	Lys	Thr	Pro	Glu	Asn 415	Tyr
Pro	Asn	Ala	Gly 420	Leu	Thr	Met	Asn	Tyr 425	Сув	Arg	Asn	Pro	Asp 430	Ala	Asp
Lys	Gly	Pro 435	Trp	Сув	Phe	Thr	Thr 440	Asp	Pro	Ser	Val	Arg 445	Trp	Glu	Tyr
Cys	Asn 450	Leu	Lys	Lys	Cys	Ser 455	Gly	Thr	Glu	Ala	Ser 460	Val	Val	Ala	Pro

Pro 465	Pro	Val	Val	Leu	Leu 470	Pro	Asp	Val	Glu	Thr 475	Pro	Ser	Glu	Glu	Asp 480	
Cys	Met	Phe	Gly	Asn 485	Gly	Lys	Gly	Tyr	Arg 490	Gly	Lys	Arg	Ala	Thr 495	Thr	
Val	Thr	Gly	Thr 500	Pro	Cys	Gln	Asp	Trp 505	Ala	Ala	Gln	Glu	Pro 510	His	Arg	
His	Ser	Ile 515	Phe	Thr	Pro	Glu	Thr 520	Asn	Pro	Arg	Ala	Gly 525	Leu	Glu	Lys	
Asn	Tyr 530	Cys	Arg	Asn	Pro	Asp 535	Gly	Asp	Val	Gly	Gly 540	Pro	Trp	Cys	Tyr	
Thr 545	Thr	Asn	Pro	Arg	Lys 550	Leu	Tyr	Asp	Tyr	Cys 555	Asp	Val	Pro	Gln	Сув 560	
Ala	Ala	Pro	Ser	Phe 565	Авр	Cys	Gly	Lys	Pro 570	Gln	Val	Glu	Pro	Lys 575	Lys	
Cys	Pro	Gly	Arg 580	Val	Val	Gly	Gly	Сув 585	Val	Ala	His	Pro	His 590	Ser	Trp	
Pro	Trp	Gln 595	Val	Ser	Leu	Arg	Thr 600	Arg	Phe	Gly	Met	His 605	Phe	Сув	Gly	
Gly	Thr 610	Leu	Ile	Ser	Pro	Glu 615	Trp	Val	Leu	Thr	Ala 620	Ala	His	Cys	Leu	

Glu 625	Lys	Ser	Pro	Arg	Pro 630	Ser	Ser	Tyr	Lys	Val 635	Ile	Leu	Gly	Ala	His 640	
Gln	Glu	Val	Asn	Leu 645	Glu	Pro	His	Val	Gln 650	Glu	Ile	Glu	Val	Ser 655	Arg	
Leu	Phe	Leu	Glu 660	Pro	Thr	Arg	Lys	Asp 665	Ile	Ala	Leu	Leu	Lys 670	Leu	Ser	
Ser	Pro	Ala 675	Val	Ile	Thr	Asp	Lys 680	Val	Ile	Pro	Ala	Сув 685	Leu	Pro	Ser	
Pro	Asn 690	Tyr	Val	Val	Ala	Asp 695	Arg	Thr	Glu	Суз	Phe 700	Ile	Thr	Gly	Trp	
Gly 705	Glu	Thr	Gln	Gly	Thr 7 1 0	Phe	Gly	Ala	Gly	Leu 715	Leu	Lys	Glu	Ala	Gln 720	
Leu	Pro	Val	Ile	Glu 725	Asn	Lys	Val	Суз	Asn 730	Arg	Tyr	Glu	Phe	Leu 735	Asn	
Gly	Arg	Val	Gln 740	Ser	Thr	Glu	Leu	Cys 745	Ala	Gly	His	Leu	Ala 750	Gly	Gly	
Thr	Asp	Ser 755	Cys	Gln	Gly	Asp	Ser 760	Gly	Gly	Pro	Leu	Val 765	Cys	Phe	Glu	
Lys	Asp 770	Lys	Tyr	Ile	Leu	Gln 775	Gly	Val	Thr	Ser	Trp 780	Gly	Leu	Gly	Cys	

Ala Arg Pro Asn Lys Pro Gly Val Tyr Val Arg Val Ser Arg Phe Val 785 790 795 800 Thr Trp Ile Glu Gly Val Met Arg Asn Asn 805 810 <210> 3 <211> 750 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(750) <400> 3 gcc cct tca ttt gat tgt ggg aag cct caa gtg gag ccg aag aaa tgt 48 Ala Pro Ser Phe Asp Cys Gly Lys Pro Gln Val Glu Pro Lys Lys Cys 1 5 10 15 cct gga agg gtt gtg ggg ggg tgt gtg gcc cac cca cat tcc tgg ccc 96 Pro Gly Arg Val Val Gly Gly Cys Val Ala His Pro His Ser Trp Pro 20 25 30 tgg caa gtc agt ctt aga aca agg ttt gga atg cac ttc tgt gga ggc 144 Trp Gln Val Ser Leu Arg Thr Arg Phe Gly Met His Phe Cys Gly Gly 35 40 45 acc ttg ata tcc cca gag tgg gtg ttg act gct gcc cac tgc ttg gag 192 Thr Leu Ile Ser Pro Glu Trp Val Leu Thr Ala Ala His Cys Leu Glu 50 55 60 aag too coa agg cot toa too tao aag gto ato otg ggt goa cao caa 240 Lys Ser Pro Arg Pro Ser Ser Tyr Lys Val Ile Leu Gly Ala His Gln 65 70 75 80

gaa Glu	gtg Val	aat Asn	ctc Leu	gaa Glu 85	ccg Pro	cat His	gtt Val	cag Gln	gaa Glu 90	ata Ile	gaa Glu	gtg Val	tct Ser	agg Arg 95	ctg Leu	288
ttc Phe	ttg Leu	gag Glu	ccc Pro 100	aca Thr	cga Arg	aaa Lys	gat Asp	att Ile 105	gcc Ala	ttg Leu	cta Leu	aag Lys	cta Leu 110	agc Ser	agt Ser	336
cct Pro	gcc Ala	gtc Val 115	atc Ile	act Thr	gac Asp	ааа Lув	gta Val 120	atc Ile	cca Pro	gct Ala	tgt Cys	ctg Leu 125	cca Pro	tcc Ser	cca Pro	384
aat Asn	tat Tyr 130	gtg Val	gtc Val	gct Ala	gac Asp	cgg Arg 135	acc Thr	gaa Glu	tgt Cys	ttc Phe	atc Ile 140	act Thr	ggc Gly	tgg Trp	gga Gly	432
gaa Glu 145	acc Thr	caa Gln	ggt Gly	act Thr	ttt Phe 150	gga Gly	gct Ala	ggc Gly	ctt Leu	ctc Leu 155	aag Lys	gaa Glu	gcc Ala	cag Gln	ctc Leu 160	480
cct Pro	gtg Val	att Ile	gag Glu	aat Asn 165	ааа Lув	gtg Val	tgc Cys	aat Asn	cgc Arg 170	tat Tyr	gag Glu	ttt Phe	ctg Leu	aat Asn 175	gga Gly	528
aga Arg	gtc Val	caa Gln	tcc Ser 180	acc Thr	g aa Glu	ctc Leu	tgt Cys	gct Ala 185	61A G1A	cat His	ttg Leu	gcc Ala	gga Gly 190	ggc Gly	act Thr	576
gac Asp	agt Ser	tgc Cys 195	cag Gln	ggt Gly	gac Авр	agt Ser	gga Gly 200	ggt Gly	cct Pro	ctg Leu	gtt Val	tgc Cys 205	ttc Phe	gag Glu	aag Lys	624
gac Asp	aaa Lys 210	tac Tyr	att Ile	tta Leu	caa Gln	gga Gly 215	gtc Val	act Thr	tct Ser	tgg Trp	ggt Gly 220	ctt Leu	ggc Gly	tgt Cys	gca Ala	672

cgc ccc aat aag cct ggt gtc tat gtt cgt gtt tca agg ttt gtt act 720 Arg Pro Asn Lys Pro Gly Val Tyr Val Arg Val Ser Arg Phe Val Thr 225 230 235 240 tgg att gag gga gtg atg aga aat aat taa 750 Trp Ile Glu Gly Val Met Arg Asn Asn 245 <210> 4 <211> 249 <212> PRT <213> Homo sapiens <400> 4 Ala Pro Ser Phe Asp Cys Gly Lys Pro Gln Val Glu Pro Lys Lys Cys 1 5 15 10 Pro Gly Arg Val Val Gly Gly Cys Val Ala His Pro His Ser Trp Pro 20 25 30 Trp Gln Val Ser Leu Arg Thr Arg Phe Gly Met His Phe Cys Gly Gly 35 40 45 Thr Leu Ile Ser Pro Glu Trp Val Leu Thr Ala Ala His Cys Leu Glu 50 55 60 Lys Ser Pro Arg Pro Ser Ser Tyr Lys Val Ile Leu Gly Ala His Gln 65 70 75 80 Glu Val Asn Leu Glu Pro His Val Gln Glu Ile Glu Val Ser Arg Leu 85 90 95

Phe	Leu	Glu	Pro 100	Thr	Arg	Гла	Asp	Ile 105	Ala	Leu	Leu	Lys	Leu 110	Ser	Ser
Pro	Ala	Val 115	Ile	Thr	Asp	Lys	Val 120	Ile	Pro	Ala	Сув	Leu 125	Pro	Ser	Pro
Asn	Tyr 130	Val	Val	Ala	Asp	Arg 135	Thr	Glu	Cys	Phe	Ile 140	Thr	Gly	Trp	Gly
Glu 145	Thr	Gln	Gly	Thr	Phe 150	Gly	Ala	Gly	Leu	Leu 155	Lys	Glu	Ala	Gln	Leu 160
Pro	Val	Ile	Glu	Asn 165	Lys	Val	Cys	Asn	Arg 170	Tyr	Glu	Phe	Leu	Asn 175	Gly
Arg	Val	Gln	Ser 180	Thr	Glu	Leu	Cys	Ala 185	Gly	His	Leu	Ala	Gly 190	Gly	Thr
Asp	Ser	Cys 195	Gln	Gly	Asp	Ser	Gly 200	Gly	Pro	Leu	Val	Cys 205	Phe	Glu	Lys
Asp	Lys 210	Tyr	Ile	Leu	Gln	Gly 215	Val	Thr	Ser	Trp	Gly 220	Leu	Gly	Сув	Ala
Arg 225	Pro	Asn	Lys	Pro	Gly 230	Val	Tyr	Val	Arg	Val 235	Ser	Arg	Phe	Val	Thr 240
Trp	Ile	Glu	Gly	Val 245	Met	Arg	Asn	Asn							

<210> 5 <211> 1047 <212> DNA <213> Homo sapiens <220> <221> CDS <222> (1)..(1047) <400> 5 gca cct ccg cct gtt gtc ctg ctt cca gat gta gag act cct tcc gaa 48 Ala Pro Pro Val Val Leu Leu Pro Asp Val Glu Thr Pro Ser Glu 1 5 10 15 gaa gac tgt atg ttt ggg aat ggg aaa gga tac cga ggc aag agg gcg 96 Glu Asp Cys Met Phe Gly Asn Gly Lys Gly Tyr Arg Gly Lys Arg Ala 20 25 30 ace act gtt act ggg acg eca tge cag gae tgg get gee cag gag ece 144Thr Thr Val Thr Gly Thr Pro Cys Gln Asp Trp Ala Ala Gln Glu Pro 35 40 45 cat aga cac agc att ttc act cca gag aca aat cca cgg gcg ggt ctg 192 His Arg His Ser Ile Phe Thr Pro Glu Thr Asn Pro Arg Ala Gly Leu 50 55 60 gaa aaa aat tac tgc cgt aac cct gat ggt gat gta ggt ggt ccc tgg 240 Glu Lys Asn Tyr Cys Arg Asn Pro Asp Gly Asp Val Gly Gly Pro Trp 65 70 75 80 tge tac acg aca aat cca aga aaa ett tac gae tae tgt gat gte eet 288 Cys Tyr Thr Thr Asn Pro Arg Lys Leu Tyr Asp Tyr Cys Asp Val Pro 85 90 95 cag tgt gcg gcc cct tca ttt gat tgt ggg aag cct caa gtg gag ccg 336 Gln Cys Ala Ala Pro Ser Phe Asp Cys Gly Lys Pro Gln Val Glu Pro 100 105 110

aag Lys	aaa Lys	tgt Cys 115	cct Pro	gga Gly	agg Arg	gtt Val	gtg Val 120	д1λ ааа	glà aàa	tgt Cys	gtg Val	gcc Ala 125	cac His	cca Pro	cat His	384
tcc Ser	tgg Trp 130	ccc Pro	tgg Trp	caa Gln	gtc Val	agt Ser 135	ctt Leu	aga Arg	aca Thr	agg Arg	ttt Phe 140	gga Gly	atg Met	cac His	ttc Phe	432
tgt Cys 145	gga Gly	ggc Gly	acc Thr	ttg Leu	ata Ile 150	tcc Ser	cca Pro	gag Glu	tgg Trp	gtg Val 155	ttg Leu	act Thr	gct Ala	gcc Ala	cac His 160	480
tgc Cys	ttg Leu	gag Glu	aag Lys	tcc Ser 165	cca Pro	agg Arg	cct Pro	tca Ser	tcc Ser 170	tac Tyr	aag Lys	gtc Val	atc Ile	ctg Leu 175	ggt Gly	528
gca Ala	cac His	caa Gln	gaa Glu 180	gtg Val	aat Asn	ctc Leu	gaa Glu	ccg Pro 185	cat His	gtt Val	cag Gln	gaa Glu	ata Ile 190	gaa Glu	gtg Val	576
tct Ser	agg Arg	ctg Leu 195	ttc Phe	ttg Leu	gag Glu	ccc Pro	aca Thr 200	cga Arg	aaa Lys	gat Asp	att Ile	gcc Ala 205	ttg Leu	cta Leu	aag Lys	624
cta Leu	agc Ser 210	agt Ser	cct Pro	gcc Ala	gtc Val	atc Ile 215	act Thr	gac Asp	aaa Lys	gta Val	atc Ile 220	cca Pro	gct Ala	tgt Cys	ctg Leu	672
cca Pro 225	tcc Ser	cca Pro	aat Asn	tat Tyr	gtg Val 230	gtc Val	gct Ala	gac Asp	cgg Arg	acc Thr 235	gaa Glu	tgt Cys	ttc Phe	atc Ile	act Thr 240	720
ggc Gly	tgg Trp	gga Gly	gaa Glu	acc Thr 245	caa Gln	ggt Gly	act Thr	ttt Phe	gga Gly 250	gct Ala	ggc Gly	ctt Leu	ctc Leu	aag Lys 255	gaa Glu	768

gcc Ala	cag Gln	ctc Leu	cct Pro 260	gtg Val	att Ile	gag Glu	aat Asn	aaa Lys 265	gtg Val	tgc Cys	aat Asn	cgc Arg	tat Tyr 270	gag Glu	ttt Phe	816
ctg Leu	aat Asn	gga Gly 275	aga Arg	gtc Val	caa Gln	tcc Ser	acc Thr 280	gaa Glu	ctc Leu	tgt Cys	gct Ala	999 Gly 285	cat His	ttg Leu	gcc Ala	864
gga Gly	ggc Gly 290	act Thr	gac Asp	agt Ser	tgc Cys	cag Gln 295	ggt Gly	gac Asp	agt Ser	gga Gly	ggt Gly 300	cct Pro	ctg Leu	gtt Val	tgc Cys	912
ttc Phe 305	gag Glu	aag Lys	gac Asp	aaa Lys	tac Tyr 310	att Ile	tta Leu	caa Gln	gga Gly	gtc Val 315	act Thr	tct Ser	tgg Trp	ggt Gly	ctt Leu 320	960
ggc Gly	tgt Cys	gca Ala	cgc Arg	ccc Pro 325	aat Asn	aag Lys	cct Pro	ggt Gly	gtc Val 330	tat Tyr	gtt Val	cgt Arg	gtt Val	tca Ser 335	agg Arg	1008
ttt Phe	gtt Val	act Thr	tgg Trp 340	att Ile	gag Glu	gga Gly	gtg Val	atg Met 345	aga Arg	aat Asn	aat Asn	taa				1047
<210 <211 <212 <213	> (> 1 > 1 > 1	5 348 PRT Homo	sapi	.ens												
<400	> f	5														
Ala 1	Pro	Pro	Pro	Val 5	Val	Leu	Leu	Pro	Asp 10	Val	Glu	Thr	Pro	Ser 15	Glu	

Glu	Asp	Сув	Met 20	Phe	Gly	Asn	Gly	Lys 25	Gly	Tyr	Arg	Gly	Lys 30	Arg	Ala
Thr	Thr	Val 35	Thr	Gly	Thr	Pro	Сув 40	Gln	Азр	Trp	Ala	Ala 45	Gln	Glu	Pro
His	Arg 50	His	Ser	Ile	Phe	Thr 55	Pro	Glu	Thr	Asn	Pro 60	Arg	Ala	Gly	Leu
Glu 65	Lys	Asn	Tyr	Cys	Arg 70	Asn	Pro	Азр	Gly	Asp 75	Val	Gly	Gly	Pro	Trp 80
Cys	Tyr	Thr	Thr	Asn 85	Pro	Arg	Lys	Leu	Tyr 90	Asp	Tyr	Суз	Asp	Val 95	Pro
Gln	Сув	Ala	Ala 100	Pro	Ser	Phe	Asp	Cys 105	Gly	Lys	Pro	Gln	Val 110	Glu	Pro
Lys	Lys	Cys 115	Pro	Gly	Arg	Val	Val 120	Gly	Gly	Cys	Val	Ala 125	His	Pro	His
Ser	Trp 130	Pro	Trp	Gln	Val	Ser 135	Leu	Arg	Thr	Arg	Phe 140	Gly	Met	His	Phe
Cys 145	Gly	Gly	Thr	Leu	Ile 150	Ser	Pro	Glu	Trp	Val 155	Leu	Thr	Ala	Ala	His 160
Сув	Leu	GIU	Lys	Ser 165	Pro	Arg	Pro	Ser	Ser 170	Tyr	Lys	Val	Ile	Leu 175	Gly

Ala	His	Gln	Glu 180	Val	Asn	Leu	Glu	Pro 185	His	Val	Gln	Glu	Ile 190	Glu	Val
Ser	Arg	Leu 195	Phe	Leu	Glu	Pro	Thr 200	Arg	Lys	Asp	Ile	Ala 205	Leu	Leu	Lys
Leu	Ser 210	Ser	Pro	Ala	Val	Ile 215	Thr	Asp	Lys	Val	Ile 220	Pro	Ala	Cys	Leu
Pro 225	Ser	Pro	Asn	Tyr	Val 230	Val	Ala	Asp	Arg	Thr 235	Glu	Сув	Phe	Ile	Thr 240
Gly	Trp	Gly	Glu	Thr 245	Gln	Gly	Thr	Phe	Gly 250	Ala	Gly	Leu	Leu	Lys 255	Glu
Ala	Gln	Leu	Pro 260	Val	Ile	Glu	Asn	Lys 265	Val	Сув	Asn	Arg	Tyr 270	Glu	Phe
Leu	Asn	Gly 275	Arg	Val	Gln	Ser	Thr 280	Glu	Leu	Суз	Ala	Gly 285	His	Leu	Ala
Gly	Gly 290	Thr	Asp	Ser	Сув	Gln 295	Gly	Asp	Ser	Gly	Gly 300	Pro	Leu	Val	Сув
Phe 305	Glu	Lys	Asp	Lys	Tyr 310	Ile	Leu	Gln	Gly	Val 315	Thr	Ser	Trp	Gly	Leu 320
Gly	Суз	Ala	Arg	Pro 325	Asn	Lys	Pro	Gly	Val 330	Tyr	Val	Arg	Val	Ser 335	Arg

38

CERTIFICATE OF CORRECTION (continued) U.S. Pat. No. 7,445,775 B2

Phe Val Thr Trp Ile Glu Gly Val Met Arg Asn Asn 340 345 <210> 7 <211> 38 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)...(38) <400> 7 ggggtatete tegagaaaag ageeeettea tttgattg <210> 8 <211> 38 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> (1)..(38) <223> reverse primer human microplasminogen <400> 8 gtttttgttc tagattaatt atttctcatc actccctc <210> 9 <211> 47 <212> DNA <213> Homo sapiens

<220> <221> misc_feature
<222> (1)..(47)
<223> forward primer human miniplasminogen <400> 9 ggggtatete tegagaaaag ageaceteeg cetgttgtee tgettee 47 <210> 10 <211> 27 <212> DNA <213> Homo sapiens <220> <221> misc_feature
<222> (1)..(27)
<223> reverse primer human miniplasminogen <400> 10 gcagtgggct gcagtcaaca cccactc 27 <210> 11 <211> 7 <212> PRT <213> Artificial Sequence <220> <223> synthetic <400> 11 Glu Lys Arg Glu Ala Glu Ala 1 5

<210> 12 <211> 6 <212> PRT <213> Artificial Sequence <220> <223> synthetic <400> 12 Ala Pro Ser Phe Asp Cys 5 1 <210> 13 <211> 4 <212> PRT <213> Artificial Sequence <220> <223> synthetic <400> 13 Leu Glu Lys Arg 1 <210> 14 <211> 9 <212> PRT <213> Artificial Sequence <220> <223> synthetic <400> 14

```
Ala Pro Pro Pro Val Val Leu Leu Pro

1 5

<210> 15

<211> 9

<212> PRT

<213> Artificial Sequence

<220>

<223> synthetic

<400> 15

Glu Trp Val Leu Thr Ala Ala His Cys

1 5
```

Column 37, in Claim 6, replace "claim 4, belonging" with --claim 4, said yeast cell belonging--.

Column 38,

- in Claim 9, replace "claim 1, expressing" with --claim 1, said yeast cell expressing--.
- in Claim 9, replace "100 mg/litre" with --100 mg/liter--.
- in Claim 10, replace "secretion signal." with --secretion signal sequence--.
- Column 39, in Claim 19, replace "mammalian protein obtained" with --mammalian microplasmin obtained--.

Column 40,

- in Claim 23, replace "100 mg/litre." with --100 mg/liter.--.
- in Claim 26, replace "isolated cell" with --isolated host cell--.
- in Claim 28, replace "isolated cell" with --isolated host cell--.
- in Claim 30, replace ""isolated cell" with --isolated host cell--.